ALGEBRAIC SHORTCUTS FOR CROSS-VALIDATION OF SUPERVISED NETWORK PREDICTION AT LIGHT SPEED

Michiel Stock, T. Pahikkala, A. Airola, J. Meys, W. Waegeman and B. De Baets michiel.stock@UGent.be

KERMIT, Ghent University

@michielstock

In brief

Supervised machine learning methods are important tools to predict biological networks, such as protein-ligand-, protein-protein- or gene regulatory networks. Incorrect validation schemes can lead to an overly optimistic performance estimation. We developed kernel-based framework for light speed training, tuning and validating models for any relevant prediction setting.

Supervised network prediction

Data required: experimentally determined biological network with two similarity matrices describing the nodes.

Two-step kernel ridge regression

Our framework learns a pairwise kernel-based predictor of the form:

$$f(u,v) = \sum_{i} \sum_{j} W_{ij} k(u,u_i) g(v,v_j).$$

The weight vector can easily be obtained by:

$$W = (K + \lambda_u \mathbb{I})^{-1} Y (G + \lambda_v \mathbb{I})^{-1} ,$$

with λ_u and λ_v two regularization parameters.

Different cross-validation settings

Our algebraic shortcuts can compute leave-one-out cross-validation for any setting with a **constant time complexity**.

More information

The two-step kernel ridge regression is part of a theoretically well-founded pairwise learning framework. An R package **xnet** is currently in development. Scan the QR code on top for the preprint and a link to the software.

Experimental results

Our shortcuts can perform cross-validation several orders of magnitude faster than a naive implementation.

