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We introduce the network response problem (Su et al. 2014): given a network
G = (V,E) and an action a, predict the subnetworkGa = (Va, Ea) that responses
to the action, that is, which nodes v ∈ Va perform the action, and which directed
edges e = (v, u) ∈ Ea relay the action from v to an adjacency node u. We assume
that G is directed, and any undirected network can be seen as a special case.

We assume each action a is represented by a feature map φ(a) (e.g., bag-of-
words). We use output feature map ψ(Ga) (e.g., vector of edges and labels) to
encode the response graph Ga. Our model is based on embedding a and Ga into
a joint feature space and learn from on that space a compatibility score function

F (a, Ga;w) = 〈w, ϕ(a, Ga)〉,

where ϕ(a, Ga) = φ(a) ⊗ ψ(Ga) denotes the joint feature map. The intuition
behind this formulation is that the action with correct response graph Ga will
achieve higher compatibility score than the action with an incorrect network G′a.

The feature weight parameter w of the compatibility score function F is
learned via a regularized structured-output learning problem, where we have to
solve similar inference problem both in training and in prediction. In prediction,
given feature weights w and a network G = (V,E), the prediction for a new
input action a is the maximally-scoring response graph H∗ = (V H , EH)

H∗(a) = argmax
H∈H(G)

〈w, φ(a)⊗ ψ(H)〉 = argmax
H∈H(G)

∑
e∈EH

sye
(e,a,w),

where we have substituted sye
(e,a,w) =

∑
i wi,e,ye

φi(a) and H(G) is a set of
DAG of G. Depending on the values ye can take, the inference problem diverges
into two modes. Activation mode, we only consider the activated part of the
network G by setting ye ∈ {pp, pn}. Negative-feed mode, we also consider
the inactivated part of the network G by setting ye ∈ {pp, pn, nn}.

We have proved the inference is NP-hard, and propose two inference al-
gorithms. The sdp-inference algorithm formulates the inference problem as a
quadratic program and solves the QP by sdp relaxation. The greedy-inference
algorithm is a greedy scheme that solves the problem by iteratively maximiz-
ing H∗(a) = argmaxH∈H(G)

∑
vi∈V H

p
Fm(vi), where Fm is the marginal gain

function of adding vi into activated vertex set.
We evaluate the proposed method, which we call spin, by comparing it with

state-of-the-art network-inference methods on DBLP and Memetracker datasets.
We use two popular metrics accuracy and F1 score. In addition, we compute
Predicted Subgraph Coverage (PSC) defined as PSC = 1

mn

∑m
i=1

∑
v∈Vi
|Gv|,



Dataset
Node Accuracy Node F1 Score Edge Acc PSC
SVM MMCRF SPIN SVM MMCRF SPIN SVM SPIN SVM MMCRF SPIN

memeS 73.4 68.0 72.2 39.0 39.8 47.1 62.7 45.6 23.4 25.3 33.6
memeM 82.1 79.0 81.5 29.1 30.1 38.0 61.1 68.8 18.6 18.8 28.3
memeL 89.9 88.3 89.8 26.7 27.1 35.0 45.5 80.0 17.7 18.9 27.6
M100 71.2 73.6 76.7 49.3 50.8 54.3 33.3 61.7 33.3 35.6 34.6
M500 89.0 91.4 92.0 18.8 13.5 14.6 28.2 92.6 29.3 26.4 29.5
M700 91.9 94.1 92.1 13.8 7.3 14.2 26.3 93.0 29.4 23.9 34.4
M1k 94.1 95.8 94.2 10.9 3.5 9.3 26.6 94.7 33.7 16.6 35.2
M2k 96.8 97.6 96.7 6.2 1.4 3.4 25.3 97.6 34.6 9.6 14.7
L100 69.4 72.2 75.7 51.1 53.1 57.4 31.6 62.3 30.9 31.7 33.4
L500 85.9 89.1 86.8 21.7 15.1 24.7 27.9 87.9 14.2 11.2 19.7
L700 89.7 92.4 89.7 16.2 9.4 17.3 26.5 90.4 9.5 6.7 12.5
L1k 92.4 94.4 91.5 12.4 6.4 13.9 26.4 92.3 6.1 4.4 8.4
L2k 92.5 94.5 91.9 12.3 5.4 12.7 26.5 93.2 6.0 2.9 7.2

Geom. 85.5 86.4 86.6 19.8 12.6 20.3 32.6 79.7 18.9 14.2 21.7
Table 1. Comparison of prediction performance on global context.

Dataset Model T (103s)
Precision @ K

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

memeS
SPIN 5.50 82.9 81.0 76.0 74.0 74.0 70.0 69.8 67.9 66.7 64.7

ICM-EM 0.01 60.3 63.5 65.1 62.0 62.0 61.5 62.2 60.4 60.7 61.9
NETRATE 5.83 76.2 73.8 70.4 68.7 68.7 66.8 64.9 63.4 62.9 61.9

memeM
SPIN 5.52 82.7 72.1 70.5 69.2 69.2 67.9 66.2 65.6 64.3 64.2

ICM-EM 0.02 56.3 55.3 56.8 57.4 57.4 56.3 57.5 57.8 58.3 58.5
NETRATE 13.93 61.2 64.6 62.9 62.5 62.5 62.4 61.2 60.1 58.7 58.5

memeL
SPIN 4.75 82.2 73.6 69.1 66.7 66.7 65.9 66.1 65.9 63.9 63.6

ICM-EM 0.01 52.1 55.7 54.2 56.5 56.5 56.7 57.4 58.0 57.6 57.0
NETRATE 12.63 56.5 57.8 60.0 59.3 59.3 59.4 58.9 58.4 57.5 57.0

Table 2. Model performance in context-free influence network prediction.

where Vi is the set of focal node given action a. PSC expresses the relative size
of correctly predicted subgraph in terms of node labels.

For context-aware prediction, we assume the action feature is known and the
task is to predict the response network given an action. The prediction perfor-
mance against svm and mmcrf is listed in Table 1. We observe that spin can
dramatically boost the performance and is 2-3 times faster than other models.

For context-free prediction, the task is to predict the network skeleton given
only a collection of the response subnetworks. The measure of success is Precision@K,
where we ask for top-K edge predictions from each model and compute the pre-
cision. The result, shown in Table 2, indicates that spin outperforms netrate
and icm-em in all K spectrum.

The results demonstrate that spin can be successfully used in influence net-
work prediction problems, achieving superior performance compared to other
advanced models.
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