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Methods developed in the fields of statistical relational learning (SRL) [4]
and structured-output learning [1] allow to perform learning, reason and make
inference about multiple relational entities characterized by both hard and soft
constraints. Most such methods rely on some form of finite First-Order Logic
(FOL) to encode the learning problem, and define the constraints as (weighted)
logical formulae. One issue with these approaches is that FOL is not suited for
efficiently reasoning over domains characterized by both continuous and dis-
crete variables. In addition, standard FOL automated reasoning techniques offer
no mechanism to deal efficiently with operators among numerical variables, like
comparisons (e.g. “less-than”, “equal”) and arithmetical operations (e.g. summa-
tion). Many real-world domains however are inherently hybrid; this is especially
true in constructive machine learning tasks, where the focus is on the de-novo
design of objects with certain characteristics to be learned from examples (e.g.
a recipe for a dish, with ingredients, proportions, etc.).

In order to side-step the limitations of FOL automated reasoning tools,
we propose Learning Modulo Theories (LMT) [6], a max-margin structured-
output learning method based on the flexibility of Satisfiability Modulo Theo-
ries (SMT) [2]. SMT languages correspond to decidable fragments of First-Order
Logic, where formulae can contain Boolean variables and connectives mixed
with symbols defined by a theory T , e.g. linear arithmetic over the rationals
LA(Q). For instance, the SMT(LA(Q)) syntax allows to write constraints such
as touching i j ↔ ((xi + dxi = xj) ∨ (xj + dxj = xi)) where the variables
are Boolean (touching i j) or rational (xi, xj , dxi,dxj). In LMT we exploit
the ability of recent solvers to solve Optimization Modulo Theory (OMT) prob-
lems [5], which consist in finding a model (variable assignment) that minimizes
the value of some arithmetical term.

Inference in LMT fits into the classical structured-output framework, and as
such predicting the best output y for any given input x boils down to maximizing
the weighted compatibility function f :

y∗ = argmaxyf(x,y) = argmaxyw
>ψ(x,y)

Here the compatibility function is defined over a joint feature space ψ(x,y)
where the individual features are encoded in SMT, and can represent both in-
dicators of (un)satisfied formulae or costs associated with linear arithmetical
constraints. All (soft) constraints are associated with weights, which are learned
from the data using the machinery of structured output Support Vector Ma-
chines [7]. Since the constraints can be encoded in SMT, both inference and



learning (under a suitable loss function, such as the Hamming loss) can take
advantage of very efficient OMT solvers, such as OptiMathSAT5 [3].

We applied LMT to the task of automatic character drawing, which can
be framed as follows: given a noisy image of a hand-drawn character, con-
struct (draw) an equivalent vectorial representation. In particular, we assume
the output is a polyline made of a given number m of directed segments, each
identified by a starting point (xb, yb) and an ending point (xe, ye). Intuitively,
any good output y should (i) be as similar as possible to the noisy image,
i.e. cover as many filled pixels as possible, and (ii) it should “look like” the
corresponding vectorial character. The background knowledge includes useful
predicates that express statements such as “segment i is diagonal and upwards”
(increasing diagonal(i)), “segments i and j are connected head-to-tail” (h2t(i, j))
or compute the coverage of character pixels(coverage := 1

|P |
∑

p∈P 1(covered(p))).
The cost function is defined as:

cost := w>( increasing(i), decreasing(i), right(i)︸ ︷︷ ︸
for all segments i

,

h2t(i, i + 1), t2h(i, i + 1), h2h(i, i + 1), t2t(i, i + 1)︸ ︷︷ ︸
for all segments i

, coverage)

so that the sequence of segment and connection types delineating the vectorial
representation of a character has to be learned from data in terms of appropriate
weights.

We learned a model for each of the first five letters, using 5 annotated images
for training, and used it to infer the vectorial representation of the remaining 34
images1. The experiments were run on 8 × 8 downscaled images for efficiency.
We report a sample output generated by LMT in Figure 1. The experiments
show that, despite the very noisy annotations, LMT is indeed able to address
the character drawing problem and produce reasonable outputs for all target
letters.
1 Dataset taken from http://cs.nyu.edu/∼roweis/data.html

(a) Training Set

...

(b) Test Set (Output)

Fig. 1. Sample taken from the character drawing experiments, see [6] for the complete
details.
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