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Introduction: We consider the problem of learning hypotheses for multiple tar-
gets simultaneously: targets with training data (supervised targets) and targets
without training data (orphan targets). With respect to the target without train-
ing data we solve an unsupervised learning problem. For that, we propose the
kernel corresponding projections algorithm which transfers hypotheses learned
by any supervised kernel method from supervised to orphan targets. In contrast
to common problems like multi-task learning, domain adaption, or inductive
transfer, for the orphan target no labelled examples are available during train-
ing. Nevertheless, additional to the kernel in the instance space (i.e. the domain
of the hypotheses) we assume a further target kernel is given. So-called orphan
screening is an important real-world application from drug discovery for the ker-
nel corresponding projections learning scenario introduced above. For this ligand
prediction task related work can be found in Geppert et al. [2009] and Jacob
and Vert [2008].

Setting: Let T and H be sets of targets and hypotheses, where T and H form
reproducing kernel Hilbert spaces with kernels kT and kH. We denote T ⊂ T
and H ⊂ H the subsets of supervised targets and its hypotheses, respectively.
We assume that for every t ∈ T a hypothesis can be learned with a supervised
method and the corresponding training data. This assignment is represented via
the function g : T → H. Furthermore, let To ⊆ T \T be the orphan targets. Our
aim is to find f : To ∪ T → H, such that the restriction of f on T equals g. For
any orphan target to ∈ To we can then obtain its hypothesis via f(to) = ho.

Kernel Corresponding Projections: To start with, at first we consider linear
hypotheses H = Rd. We want the geometry in T and H to be similar. Therefore,
the function f should meet the condition

〈f(to), g(t)〉
‖g(t)‖

≈
kto,tT(
kt,tT
)1/2

for any orphan target to ∈ To and all t ∈ T . For reasons of simplicity we use the

notation kt,t
′

T = kT (t, t′). Choosing a least squares approach

ho = f(to) = argmin
h∈H′

∑
t∈T

[〈
h, g(t)

〉(
kt,tT
)1/2 − kto,tT ‖g(t)‖

]2



and exploiting the convexity of the optimization problem we obtain

f(to) =
[∑
t∈T

g(t)kt,tT g(t)T
]†[∑

t∈T
g(t)‖g(t)‖

(
kt,tT
)1/2

kto,tT

]
as solution of the linear corresponding projections problem. If κ denotes the up-
per bound for calculating kT the overall cost for linear corresponding projections
is O(|T |d2κ).

Suppose that additionally ‖g(t)‖ = 1 and 〈g(t), g(t′)〉 = 0 hold true for all t ∈ T .
This assumption can be justified well for orphan screening utilizing molecular
fingerprints (vectorial representation of molecules, which are often binary and
sparse). Then we can calculate

f(to) =
(
[GDGT ]T [GDGT ]

)−1
[GDGT ][GD̃1] =

n∑
i=1

g(ti)
kto,tT(
kt,tT
)1/2

for GT = (g(t1)| . . . |g(tn)) and D as well as D̃ appropriate diagonal matrices.
This simplified version of linear corresponding projections is also faster with
running time in O(|T |dκ).

In a more general scenario we investigate an arbitrary reproducing kernel Hilbert
space H. Let K be the gram matrix [K]i,j = kH(xi, xj), xi, xj ∈ X, with respect
to the unified training examples X of all supervised targets. In case the su-
pervised kernel method for the determination of hyptheses from T fulfills the
preconditions of the Representer Theorem, both the hypotheses ho of orphan
targets to and every learned hypothesis in H = g(T ) can be written with coeffi-
cients αo ∈ R|X| or αi ∈ R|X|, respectively. Hence, f(To ∪ T ) = span(H) follows
by construction. Utilizing this properties the regularized version of corresponding
projections’ optimization problem in general reproducing kernel Hilbert spaces
is

f(to) = argmin
α0∈R|X|

ναToKαo +

n∑
i=1

[
αToKαi

(
kti,tiT

)1/2 − kto,tiT
(
αTi Kαi

)1/2]2
for to ∈ T and T = {t1, . . . , tn}. Its solution can be deduced anologously to the
linear case as

f(to) =
[
νK +

n∑
i=1

Kαik
ti,ti
T αTi K

]−1[ n∑
i=1

Kαi
(
αTi Kαi

)1/2(
kti,tiT

)1/2
kto,tiT

]
.
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diction from Protein Sequence and Small Molecule Information Using Support Vector
Machines and Fingerprint Descriptors. J. Chem. Inf. Model., Vol. 49, 767–779 (2009)


