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Abstract. In this paper, we present a learning method for sequence la-
beling tasks in which each example sequence has multiple label sequences.
Our method learns multiple models, one model for each label sequence.
Each model computes the joint probability of all label sequences given
the example sequence. Although each model considers all label sequences,
its primary focus is only one label sequence, and therefore, each model
becomes a task-specific model, for the task belonging to that primary la-
bel. Such multiple models are learned simultaneously by facilitating the
learning transfer among models through explicit parameter sharing. We
experiment the proposed method on two applications and show that our
method significantly outperforms the state-of-the-art method.
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1 Introduction

Sequence labeling is an important task that finds applications in many areas such
as bio-informatics, natural language processing (NLP), speech recognition, image
processing etc. Depending upon the underlying sequence labeling task, labels are
assigned to the tokens present in the sequence. Often in many domains, multiple
labeling tasks need to be specified for the same sequence, i.e., multiple task
specific labels are assigned to each token in the same sequence. For example,
in NLP domain, words in a sentence can be labeled with their Part of Speech
(POS) tags as well as the phrase chunks [13]. In another domain, a customer-
care center might be interested in labeling the textual conversations between a
customer and customer-care agent with resolution status of a product specific
issue as well as the semantic tone of conversations, a.k.a. dialogue act [10].

Multiple tasks formed on one sequence, typically, tend to have intrinsic inter-
label correlations. For instance, in customer-care domain, customers typically
have complaint in their tone while describing their issue with a certain prod-
uct. Incidentally, issues status open tends to have correlation with dialogue class
COMPLAINT. In such a setting where each token in a sequence has multiple labels
and these multiple labels exhibit correlations, it is important that the learning
algorithm takes advantage of these correlations. If we define a task as learning
from pairs of example sequence and its corresponding label sequence, then we
can cast learning multiple label sequences as multitask sequence labeling learn-
ing problem. In machine learning, Multitask Learning(MTL) is a well known
problem to learn various related tasks simultaneously [7,15,14,4,9,5]. In MTL,
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most of the work has focused on classification or regression problems, with very
little work on sequence labeling problem. In addition, most of the MTL methods
are not especially designed for our multitask setting, i.e., an example sequence
has multiple label sequences. Any method especially designed for multiple label
sequences setting should exploit the dependencies among labels. One recent work
that exploits the label dependencies is the work of [12]. In this work, authors
build a model called factorial CRF (appropriate for sequence labeling tasks) that
is a combined CRF model implicitly learned on multiple tasks. In contrast to this
method, our proposed method exploits the correlations present in multiple label
sequences explicitly that not only improves upon the factorial CRF but also leads
to a flexible framework for multitask sequence learning.

In this work, we extend the MTL setting to the sequence labeling prob-
lem with multiple label sequences. Our method — based on CRFs — not only
exploits label dependencies but also learns multiple tasks simultaneously by ex-
plicitly sharing parameters. In our method, we learn one model for each task1.
Each task has two factors (as opposed to one factor in CRFs), one factor cor-
responding to all labels ( we call it label dependency factor), and other factor
corresponding to task-specific primary label (we call it task-specific factor). Since
the factor corresponding to all labels appear in all tasks, we facilitate the learn-
ing transfer among tasks by keeping the parameters corresponding to this factor
same across all tasks. We show through a variety of experiments on two different
data sets that such a model outperforms the state-of-the-art method. Note that
learning from multiple labels is typically done in two ways: (1) build one single
model that incorporates factors of all label sequences and example sequence,
i.e., complete dependency and no independent learning (2) build multiple CRF-
like independent models with no learning transfer among models, i.e., complete
independent learning, and no dependency among labels. Our proposed method
is a middle ground between these two extremes, and provides the best of both
worlds. Because of a task-specific factor, it allows model to learn independently,
and at the same time, because of label-dependency factor, it allows learning to
transferred among all tasks.

In this work, we also propose a variation of this method. This variation
allows one to control the amount of transfer among multiple tasks. Experimental
results of this variation show further improvement. One of the main advantages
of MTL is its relatively less reliance on task specific parameter tuning (rather
draws benefit from other tasks), making it robust and applicable to wider set of
applications. In our experiment, we spend little to no efforts on hyper-parameter
tuning, and our the main improvement comes from the MTL paradigm, a natural
method for learning.

1 A task definition is expanded to include all labels, however, each task has one primary
label sequence, and other label sequences are considered secondary.
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2 Background and Problem Description

We first define CRFs. CRFs [6] are undirected graphical models that model the
conditional probability of a label sequence given an observed example sequence.
Let G be an undirected graphical model over random variable sequences x and
y, i.e. x = (x1, x2, . . . xT ) is the sequence of observed entities (e.g. words in a
sentence) that we want to label with y = (y1, y2, . . . yT ). (x,y). In the undirected
graph G, let C = {C1, C2 . . .} be the set of cliques contained in the graph, then,
given such a graph defined on example-label pair, the conditional probability
p(y|x) is given by p(y|x, θ) = 1

Z(x)

∏
c∈C Φ(yc,xc|θ), where Φ is the potential

function defined over a clique. For example, in a specific case of linear chain
CRF, these potential functions are defined over cliques (xt, yt−1, yt). Here θ is
the parameter and Z(x) is the normalization function.

In multitask sequence labeling problem, we are given multiple label sequences
for each example sequence, i.e., in addition to y = (y1, y2, . . . yT ) (as defined for
CRFs), we have z = (z1, z2, . . . zT ) as another set of label sequence for x. For
simplicity, we only consider two types of label sequences, however, it is straight-
forward to extend our approach to more than two labeling sequences (see Def-
inition 1). Thus our training examples for the entire task become triplets of
{xi,yi, zi}ni=1. Therefore, the multiple sequence labeling problem can be formal-
ized as modeling conditional density p(y, z|x).

3 Our Approach

In this section, we first describe a basic approach. In our basic but novel ap-
proach, we begin by providing a middle ground between two extremes (i.e. one
single fully dependent model [12,8] and two fully independent CRF-like models),
where both tasks are modeled independently but at the same time, one task
draws benefit from other task through label dependencies. We model p(y, z|x)
by considering two types of cliques: task-specific clique i.e. Φ(yt−1, yt, xt) and
common clique Φ(yt, zt, xt). Here task-specific clique provides the independence
while the common clique provides the benefit from other labels. As we shall see
later, such a model provides better discriminating power than the models that
consider all types of cliques [12,8]. Given such two types of cliques, the condi-
tional probability of both label sequences given the example sequence can be
written as:

py(y, z|x, θy, ψy) =
1

Uy(x)

T∏
t=1

(
Φ(yt−1, yt, xt|θy)︸ ︷︷ ︸

task(y) factor

)(
Φ(yt, zt, xt|ψy)︸ ︷︷ ︸
label dependency

factor

)
(1)

Although (1) provides the probability of both the labels, i.e., (y, z), conditioned
on x , there is no clique that depends on adjacent z labels, i.e., zt, zt−1. Thus
though incorporating partial information from other label z, the above model
still focuses on the task y. One can define a similar model for task z by replacing
y with z. Note that in the above models each type of clique has its own separate
set of parameters, i.e. task y has its parameters θy and ψy and the task z has
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its own parameters θz and ψz. We call this model unshared model. A pictorial
representation of this unshared model is shown in Figure 1. The above models
can be optimized (and inferenced) using the standard machinery used in CRF
since these models are exactly the same as CRF except an additional clique.
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(c) shared
Fig. 1: Graphical model representations of CRF, unshared and shared models. Note
the common factors in the shared model, above and below the horizontal line. These
factors are defined over the same random variables and share the parameters. Also note
that the shared version has two separate graphical models with shared parameters and
should not be confused with one model.

Below we define the generalized unshared multilabel model, i.e., there can
be any number of labels with arbitrary dependencies among them.

Definition 1 Let x be an observed example sequence with y1,y2, . . .yk its mul-
tiple label sequences. Let Ct be the set of cliques denoting the possible interactions
among labels at time t (i.e., interaction among labels y1,y2, . . .yk), then, the un-
shared multilabel model is a set of task-specific models where each task-specific
model (for task yl) is defined as:

pyl(y1,y2, . . . ,yk|x, θyl , ψyl) =
1

Z(x)

( T∏
t=1

Φ(yl,t−1, yl,t, xt|θyl)
)( T∏

t=1

∏
c∈Ct

Φ(yc, xt|ψyl)
)

3.1 Shared Models

Although more accurate than the existing methods (CRF and factorial CRF) (see
experiments), this method does not take advantage of the multitask nature of the
problem, as both models have their own separate set of parameters, and there is
no learning transfer between these models. We exploit the multitask nature of the
problem and facilitate learning transfer by sharing the parameters corresponding
to the common clique in both models. Sharing parameters to facilitate learning
transfer is a well-known practice in multitask learning [9,5,2,4,3]. In other words,
we make ψy = ψz = ψ. We call this formulation shared model. A pictorial
representation of this shared model is shown in Figure 1. Now for the clarity
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and follow up discussion, we write the formulation for task y (similar for task z)
in terms of corresponding feature functions (under shared model):

py(y, z|x, θy, ψ) =
1

Uy(x)

T∏
t=1

exp
(∑

k

(
θykfk(yt−1, yt, xt) + ψkfk(yt, zt, xt)

))
. (2)

Next we construct our objective function to fit data to these models. We take
four specific approaches to define objective function as described below.

Joint Optimization: We hypothesize that although each of these models are
sufficient to learn the labels for both tasks independently, it will be advantageous
to learn them simultaneously. Consequently, we define a joint model that is the
product of both models We maximize the likelihood of the data under this model,
i.e., find the parameters by optimizing the joint log likelihood. This is equivalent
to minimizing cumulative loss of both models on the training data. To reduce the
overfitting, we use Gaussian prior with zero mean and unit variance on all param-
eters. The log likelihood of the data with this modeling approach can be written
as: `(θy, θz, ψ) =

∑n
i=1 log py

(
y(i), z(i)|x(i), θy, ψ

)
+log pz

(
y(i), z(i)|x(i), θz, ψ

)
−

ηy

2 ‖θ
y‖2−η

z

2 ‖θ
z‖2−η

o

2 ‖ψ‖
2. Note that the joint likelihood function `(θy, θz, ψ)

is convex in all its parameters i.e. θy, θz, and ψ; and hence can be optimized by
a number of techniques. In our implementation, we use L-BFGS for parameter
optimization, and belief propagation and Viterbi for inferences.

3.2 Variance Models

We also propose a variation of the above model where the shared parameters
is further broken into two parts: one task specific while other common. We
hypothesize that the whole label dependency factor may not be common to
both tasks, but only a part of it. As we shall see shortly that it will bring
flexibility in the model, allowing one to control the amount of transfer among
different tasks. Along the lines of [9], we believe that the parameters corre-
sponding to the label dependency factor lie around a common set of parame-
ters having their own variance specific to task. With this assumption, the com-
mon set of parameters ψ can be written as: ψy = ψo + νy. Now, ψo is the
part that is common to all tasks while νy is the task specific part. This is to
indicate that there might be a component of ψ that is only specific to that
task when considering parameters ψ. The log likelihood under this modeling
paradigm with proper prior on each parameter can be written as: `y(θy, νy, ψo) =∑n
i=1 log py(y(i), z(i)|x(i), θy, νy, ψo) − ηy

2 ‖θ
y‖2−λ2 ‖ν

y‖2−η
o

2 ‖ψ
o‖2. We empha-

size here the importance of the factor λ/ηo which acts as a interpolating factor
interpolating between a unshared model and a completely shared model. Note
that λ/ηo → 0 =⇒ ψo → 0 while λ/ηo → ∞ forces θy and νy to go to zero.
Under this variance model, similar to the previous models, there can be two
ways to model the data likelihood: one is jointly and other alternative.
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4 Experiments

In this section, we describe the datasets, our experimental methodology, and
report results.

4.1 Dataset

We evaluate and report our results on two datasets. The first dataset comes
from an electronic conversation medium over social media (twitter). The ex-
ample set is borrowed from real conversations (chat) between customers and
customer care agents for a particular telecommunication carrier. Two specific
tasks are designed in this case where the chat sentences are labeled for (1) na-
ture of dialogue between customer and agent (namely Dialogue Act), and (2)
nature of the state of the issue being discussed by customer and agent (namely
Issue Status). We employed 3 annotators for labeling each sentence present in
the conversations. Each conversation is treated as a sequence example akin to
a sentence in the first dataset. For first task, sentences are annotated from 12
label such as Complaint, answer, acknowledgement, response, apology etc. For
second task, sentences are annotated with 4 labels: Open Issue, Issue Resolved,
Change Medium of Communication, and Issue Closed. We take 291 annotated
conversations with a total of 3072 sentences with 10.6 sentences per conversa-
tion. We append frequent bigrams, emoticons, punctuation and standard word
features such as capitalization etc.

In order to show the effectiveness of our method beyond issue-status and
dialogue act prediction problems, we also experiment with a second dataset.
This second dataset corresponds to a noun phrase chunking and POS tagging
tasks, and comes from a CoNLL 2000 shared-task 2. We take a smaller set of
the original data set primarily because MTL only makes sense when single task
learning (STL) is not sufficient (i.e. it is difficult). This difficulty of STL can
be attributed to two main reasons– one, there are not enough labeled examples,
and second, the problem itself is a difficult problem despite being enough labeled
examples. The CoNLL dataset violates both of these conditions, i.e., there are
enough labeled examples, and these labeled examples give a very good accuracy
i.e., in the range of 99%. So in order to make the MTL applicable here, we
increase the difficulty of the problem by reducing the size of labeled data. The
smaller dataset consists of total 350 sentences containing 8785 individual tokens
as examples. We split the data into 150 train and 200 test examples. In this
dataset, two tasks correspond to the NP chunking and part-of-speech (POS )
tagging. The idea is to get performance improvement by learning from these two
tasks simultaneously. This dataset is also used in the baseline method by Sutton
et al., [12]. For the sake of completeness, we also ran our experiments on full
dataset, and all methods performed between 98% and 99%.

2 Publicly available at [13] http://mallet.cs.umass.edu/grmm/data

http://mallet.cs.umass.edu/grmm/data
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4.2 Models Comparisons

We use following models for comparisons. Among these models, one is baseline,
other models are ours, with different variations.

– Factorial CRF[12]: We use this as our primary baseline.
– Unshared model: Both tasks have their own separate parameters (See

Definition 1).
– JOSP: (Jointly Optimized Shared Parameters) This is the shared model

where parameters are learned by optimizing the joint likelihood.
– AOSP: (Alternatively Optimized Shared Parameters) This is the shared

model but in contrast to the joint optimization, here parameter are learned
in an alternative fashion, i.e., we split the joint likelihood into two parts, one
for each task and optimize the parameters alternatively. ψ is still a common
set of parameters among both tasks however we do not optimize the joint
likelihood.

– JOVM: (Jointly Optimized Variance Model) Variance model as defined in
Section 3.2 but parameters are learned by optimizing the joint likelihood.

– AOVM: (Alternatively Optimized Variance Model) Variance model as de-
fined in Section 3.2 but parameters are learned alternatively.

4.3 Results

We use accuracy as our metric of evaluation. Here we define accuracy as fraction
of correctly labeled tokens in sequences present in the test set. It is important to
note that we report the accuracy from their respective models i.e., each model
gives labels for all tasks but we take the labels from the model that is specific to
that task (as described in Section 3.1). The results for the two datasets are pre-
sented in Table 1. We vary the training size and report the results. All reported
results are averaged over 10 random runs, and their means and standard devi-
ations are reported. For the baseline, we use the code provided by the authors.
All the hyper-parameters are tuned via cross validation with 10 folds.

From these results we draw multiple conclusions: (1) In general, learning tasks
together in MTL setting —either directly or using variance method— helps. All
results show significant improvement over factorial CRF. This improvement is
higher when there are fewer labeled examples. (2) Though in some cases, MTL
(Shared model and Variance model) helps over factorial CRF but learning them
independently (Unshared model) helps even more. e.g. Issue Status task. This
establishes the fact that not all tasks improve from MTL. In fact, it shows that
in multiple tasks, one task can benefit from other tasks while another cannot.

From the accuracy figures, it can be inferred that the Task 1 is harder than
Task 2 for both datasets. The results reported show that the accuracy improve-
ments are greater for Task 1 compared to Task 2. For difficult tasks, results show
that learning both tasks independently (Unshared model) hurts. Learning them
together through explicit parameter sharing gives significant improvement over
Unshared or factorial CRF. This observation along with the observation that
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MTL improvement is higher when there are fewer labeled examples, provide ev-
idence in support of the hypothesis about the applicability of MTL, i.e., MTL is
applicable when the underlying problem is difficult, either inherently or because
of the scarcity of labeled examples. The results are not as clear for Task 2, but
still, in these tasks, results indicate that one should use MTL – either learn all
tasks together through explicit parameter sharing (Shared model or Variance
model) or not share anything at all (Unshared model). Partial sharing (one
task structure) as in factorial CRF gives inferior results.

Table 1: Experimental results for MTL for CoNLL and Social Conversations
datasets

Dataset Task %Train MTL DCRF
JOVM AOVM JOSP AOSP Unshared

POS Tagging (30%) 86.0 ± 1.3 86.3 ± 1.2 83.7 ± 1.6 84.1 ± 1.4 77.9 ± 1.2 81.6 ± 1.4
(Task 1) (60%) 91.5 ± 0.5 91.6 ± 0.4 90.7 ± 0.5 90.8 ± 0.6 85.7 ± 0.4 88.2 ± 0.5

CoNLL NP Chunking (30%) 89.0 ± 0.4 88.8 ± 0.9 88.5 ± 1.1 88.7 ± 0.9 88.8 ± 0.9 87.5 ± 0.8
(Task 2) (60%) 91.5 ± 0.5 91.6 ± 0.3 91.3 ± 0.5 91.4 ± 0.3 91.5 ± 0.4 90.7 ± 0.4

Dialogue Act (30%) 51.4 ± 2 50.7 ± 1.4 45.3 ± 2 50.5 ± 2 45.6 ± 2.0 48.9 ± 1.1
Social (Task 1) (60%) 56.7 ± 2.6 56.9 ± 1.8 55.7 ± 2.8 56.6 ± 1.6 52.1 ± 1.9 53.9 ± 1.2
Conversation Issue Status (30%) 77.2 ± 0.9 76.6 ± 0.8 74.4 ± 2.9 76.5 ± 1.1 77.2 ± 1.1 76.0 ± 1.4

(Task 2) (60%) 80.3 ± 1.1 80.5 ± 1.2 80.8 ± 1.5 80.0 ± 1.1 80.9 ± 0.6 79.4 ± 0.5

5 Conclusion

In this paper, we have presented a novel method for learning from multiple se-
quence labeling tasks. Unlike the previous methods, our method models each
task as one single model, but still transfer the learning from other tasks through
parameters sharing, thus finding the sweet spot between one single model and
multiple independent models. We have shown through various experiments on
two datasets that our method consistently outperforms the one of the best meth-
ods for such tasks, especially in cases when tasks are relatively harder and there
are few labeled examples.
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