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Abstract. We consider the problem of learning Bayesian network structures by 

exploiting both data as well as experts’ opinions about the graph. In practice, 

experts will have different individual probabilities of correctly labelling the in-

clusion or exclusion of edges of the network structure. Therefore, we propose in 

this paper to estimate the accuracy of experts and then exploit this accuracy dur-

ing the learning of the structure. We use an expectation maximization (EM) al-

gorithm to estimate the accuracies, considering the true structure as the hidden 

variable. As a second contribution, we develop a Bayesian score that considers 

the training data as well as the experts’ opinions to score different possible 

structures, and then a greedy search is done in the space of possible structures. 

The experimental results demonstrate the effectiveness of considering the ex-

perts’ accuracies in improving the accuracy of the predicted structures. 

Keywords: Bayesian networks. Structure learning. Expectation maximization. 
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1 Introduction 

In many fields, regression modelling has long been seen as a standard method for 

identifying statistical associations. The use of generalizations of regression models 

such as Bayesian networks (BNs) is now happening in many fields such as epidemi-

ology [1]. They offer a richer framework for identifying structure in a model. While 

BNs have been studied as predictive frameworks for single and multi-label classifiers, 

in epidemiology one is normally more interested in how all the variables are related to 

each other. This is a multi-target prediction problem involving multiple variables and 

their relationships.  

A common way to look at Bayesian network learning is to identify edges of an 

acyclic directed graph in such a way that the total network is optimal according to a 

given score; in many papers the score corresponds to the sum of marginal likelihood 

of nodes given their parents as represented by the BDe metric [2]. However, identify-

ing the structure between random variables is a hard task. The first problem is that in 

many real-world domains, there is few data or the data is noisy, so that the score that 
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is being used is not always reliable. A further complication is that many structures are 

likelihood equivalent, meaning that they cannot be distinguished based on the data. 

This latter point is especially relevant if one tries to learn models that are understand-

able to experts, in particular in such a way that they are given a causal interpretation.  

Given these limitations of Bayesian network structure learning, some researchers 

have proposed the use of experts for building models. For example, [3] describes the 

construction of the model structure for therapy selection for the treatment of oesopha-

gus cancer. Such a process requires a significant amount of work, includes many ses-

sions with experts and typically a lot of preparation time. Moreover, such a process 

typically cannot systematically deal with conflicting opinions between experts.  

In this paper, we propose a new method to combine knowledge from multiple ex-

perts with data to learn a Bayesian network structure, building upon an approach pro-

posed by Richardson and Domingos [4]. The main advantages of their model are that 

(i) experts only have to label some of the edges (included in the graph, or not), (ii) can 

deal with conflicting between experts, and (iii) data can be used to fill in the gaps in 

the existing knowledge such as if none of the experts have an opinion about an edge.  

However, a limitation of Richardson and Domingos' research is that they assume 

that all experts have an equal probability to correctly label the edge, which clearly is 

an unrealistic assumption. In this paper, we extend their work by learning the accura-

cies of different experts. To this end, we propose an expectation maximization algo-

rithm, where the true structure is taken as a hidden variable. Subsequently, we use this 

knowledge on the accuracy of experts in the Bayesian network learning process, using 

a novel Bayesian score that not only takes into account the data, but also the opinions 

of heterogeneous experts. 

The rest of this paper is organized as follows. Section 2 gives the preliminaries re-

garding the BN structure learning. In Section 3, we provide a description of our accu-

racy estimate method and our knowledge based score. Section 4 presents the experi-

mental results. Finally, the paper concludes in Section 5.  

2 Preliminaries 

The structure of a BN is a directed acyclic graph (DAG)   (   ), where   is the 

set of variables and       is the set of edges. An edge     corresponds to a 

direct relationship between   and  . This means that there is no set     {   } 
such that   is independent of   given  . On the other hand, BN structures often can 

be given a causal meaning, where an edge     is interpreted as   “causes”   [5].  

The problem of learning the structure of a BN from a training set   is to find the 

DAG that, in some sense, best matches  . To solve this problem, many researchers 

use the “score and search” approach [2, 6–9]. This approach scores each DAG using a 

scoring function and attempts to find the DAG that maximizes this score.  

A widely-used score and search algorithm for learning the BN structures is de-

scribed by Heckerman et al. [2]. They use the Bayesian Dirichlet (BD) score 
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where  ( ) is the prior probability of the structure,   is the number of variables,  () 

is the gamma function,    is the number of states of the Cartesian product of the par-

ents of     node,    is the number of states of the     node,      is the number of occur-

rences of the     state of     node with the     state of its parents, and     
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Using the likelihood equivalence assumption, which says that equivalent struc-

tures must have the same score, Heckerman et al. constrain the values that     
  can 

take on and provide a method to calculate these parameters. With this method, the 

user provides a prior Bayesian network and an equivalent sample size    that says 

how confident they are in it. The resulting scoring criterion is named BDe (Bayesian 

Dirichlet with likelihood equivalence). With a further constraint, such that all configu-

rations are equally likely,     
        ⁄  and the criterion is named BDeu (Bayesian 

Dirichlet with likelihood equivalence and a uniform joint distribution). 

Heckerman et al. use a greedy search in the DAG space. At each step, the algo-

rithm generates all neighbors of the current network that can be obtained by adding, 

deleting or reversing a single edge, without creating cycles, and selects the best one. 

The search ends when no neighbor achieves a higher score than the current network.   

3 Proposed Method 

3.1 Accuracy Estimation 

Assume that the structure has   nodes. Therefore, there are    (   )  ⁄  different 

node pairs in the structure. We indicate the number of experts by   and the experts’ 

predictions regarding these node pairs are collected in an     matrix, denoted by  , 

where  (   )  {       }.  (   )      means that the     expert has not provided 

any prediction about the     pair.     and     indicate the inclusion of an edge in a 

particular direction, and     means the exclusion of edges.  

We model the accuracy of each expert by a     confusion matrix: 
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If all confusion matrices are collectively denoted by  , the maximum likelihood 

estimate of  , with the independence assumption, is 
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To solve this optimization problem, we consider the true structure as a hidden varia-

ble and use the EM algorithm. We model the true structure as an     matrix  , 

where each row is related to one pair of variables. Columns of this matrix are labeled 

by {     }. According to the status of each pair, the corresponding column in the 

related row is equal to one and the other two elements are zero.  

The EM algorithm iterates between two steps: an Expectation (E)-step and a Max-

imization (M)-step. In the E-step, it computes a new estimate of the expectation of the 

hidden variable given the current estimate of the model parameters and available ex-

perts’ opinions. In the M-step, it uses the current estimate of the expectation of the 

hidden variable to compute a new estimate of the model parameters by maximizing 

the conditional expectation.  

In addition to the confusion matrices, we also have the prior probabilities as model 

parameters. The prior probability of each element of {     } is the probability of 

that element for a randomly selected pair prior to viewing the opinions. We denote the 

model parameters by   {          }, where   denotes the confusion matrices, and 

  ,   , and    are the prior probabilities of {     }. 
Since  (   ) is a binary variable, in the E-step we have: 
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where  ( ) is the current estimate of the model parameters.   ( (   )   | ( )) is 

simply the prior probability of the     element in {     } which can be obtained 

from  ( ). In addition, by assuming that the opinions are independent, we can simply 

compute   ( | (   )     ( )) using the confusion matrices available in  ( ). Final-

ly,   ( | ( )) is a normalization factor that can be computed in a straightforward 

manner.  

In the M-step, a new estimate of the model parameters is computed by the follow-

ing maximization: 

 (   )         { [     (   | ) |   ( )]} (4) 

By equating the partial derivatives to zero, we obtain the following estimate for the 

prior probabilities: 
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where   
(   )

 is the next estimate for the prior probability of the     element in 

{     },    is the number of experts that have expressed their opinions about the 

    pair, and  [ (   )|   ( )] has been computed during the E-step. 

Also, the next estimate for the confusion matrix elements of the     expert is: 
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where   is the Kronecker delta function. 

We start the EM algorithm with initializing the expectation of the hidden variable 

  and continue with the M-step. The initial value of  [ (   )] is set to the ratio of 

available opinions about the     pair that are equal to the     element of {     }.  

3.2 Knowledge Based Bayesian Score 

To score a candidate DAG  , we can consider  ( |   ) as a reasonable measure, 

where   is the training data and   is the matrix including the experts’ opinions. It is 

obvious that 

 ( |   )   (     )   ( ) ( | ) ( |   ) (7) 

It is reasonable to assume that given  , the training data and the experts’ opinions are 

independent, and therefore we have  ( |   )   ( | ).  

We define our knowledge based scoring function as 

       (     )      ( )      ( | )      ( | ) (8) 

Therefore, the KB score has three parts: a prior part, a data part, and a knowledge 

part. For the prior  ( ), inspired from [4], we assume that each pair of nodes inde-

pendently has some prior probability    of being connected by an edge in a given 

direction. Therefore,  ( )  ∏  (  )
 
     where    is the     node pair, and  (  )  

   if it includes an edge in any direction, and  (  )        if it lacks an edge.  

For the data part  ( | ), we use the likelihood part of the BDeu score. Finally, 

for the knowledge part  ( | ), we use the maximum likelihood estimate of the con-

fusion matrices     , and compute  ( |      ) assuming that the opinions are 

independent given the structure and the confusion matrices.  

4 Experiments 

In order to illustrate the effectiveness of the proposed method, we use two standard 

BNs: 1) the ‘Insurance’ network with 27 variables and 52 edges, and 2) the ‘Alarm’ 

network with 37 variables and 46 edges. For these BNs, the experts’ opinions are 

simulated. We use three parameters for each expert to generate his/her confusion ma-

trix: the probability of correctly selecting the existing edges, the probability of in-

versely selecting the existing edges, and the probability of correctly selecting the ab-

sent edges. We denote these parameters by   ,     and   , respectively. 

We generate two different populations each with      experts, and label them as 

‘Worse’ and ‘Better’. Table 1 lists the parameters assigned to each expert in these 

populations, as well as the average parameters of each population. There are six ex-

perts that are equally accurate in both populations. The parameters of these experts 



are selected from the whole range of possible values. The other four experts have 

higher accuracies in the ‘Better’ population than the ‘Worse’ population.  

A parameter   [   ] controls the number of total opinions provided by experts. 

This parameter indicates the ratio of opinions provided by all experts. Since the max-

imum possible number of opinions is    , the number of opinions in a particular 

experiment is      . We use   {               } in our experiments. 

We generate 1000 data samples from the networks in each experiment. In order to 

reduce the effect of randomness (in the simulated opinions and generated data sam-

ples), we repeat each experiment 10 times and report the average results.  

For the evaluation, two different measures are reported: 

 Structural Hamming Distance (SHD) which is equal to the number of edge devia-

tions (missing plus additional plus orientation errors) between the learned structure 

and the gold-standard network (lower is better).  

 Not Detected Ratio (NDR) which is equal to the ratio of edges not detected by the 

algorithm (or detected with the wrong orientation) in comparison to the gold-

standard network (lower is better). 

We compare our algorithm with four scenarios:  

 Only data, neglecting the knowledge part of the KB score. This scenario is similar 

to the approach of the methods which use the BDeu score [2].  

 Only knowledge, neglecting the data part of the KB score. 

 Best equal confusions, considering both data and knowledge parts in the KB score, 

but using equal confusion matrices for all experts. We use the best estimable con-

fusion matrix by comparing the opinions with the gold-standard networks. This is 

the best achievable outcome from the Richardson and Domingos' method [4].  

 Best multiple confusions, considering both data and knowledge parts in the KB 

score, but using the best estimable confusion matrices for each expert. The best es-

timable confusion matrix of an expert is obtained by comparing his/her opinions 

with the gold-standard network. The results of this scenario are the best achievable 

outcomes from our method.  

As the search procedure, we use the same greedy search as Heckerman et al. [2] in-

troduced in Section 2, starting from an empty network. Finally, we set    in the prior 

 ( ) to     and equivalent sample size in  ( | ) to 1. 

Table 1. The parameters assigned to each expert in the simulated populations. 

  1 2 3 4 5 6 7 8 9 10 Mean 

W
o

r
se

    0.3 0.2 0.15 0.7 0.9 0.75 0.4 0.6 0.45 0.55 0.5 

   0.3 0.15 0.8 0.2 0.05 0.1 0.25 0.3 0.35 0.2 0.27 

   0.3 0.95 0.85 0.7 0.8 0.9 0.5 0.65 0.45 0.6 0.67 

B
e
tt

e
r    0.3 0.2 0.15 0.7 0.9 0.75 0.85 0.8 0.7 0.75 0.61 

   0.3 0.15 0.8 0.2 0.05 0.1 0.05 0.1 0.15 0.15 0.21 

   0.3 0.95 0.85 0.7 0.8 0.9 0.85 0.9 0.8 0.7 0.78 



Results obtained by the ‘Worse’ and ‘Better’ populations for the ‘Insurance’ net-

work are presented in Table 2 and Table 3, respectively. Also, Table 4 and Table 5 

display the results obtained for the ‘Alarm’ network. It is obvious that in the majority 

of cases, our method outperforms the ‘Only Data’ and ‘Only Knowledge’ scenarios. 

Therefore, the KB score can effectively utilize both the training data and the experts’ 

opinions for scoring different structures. In addition, in all cases, the ‘Best Multiple 

Confusions’ scenario outperforms the ‘Best Equal Confusions’ scenario. Therefore, 

we conclude that considering different accuracies for different experts is a promising 

idea for improving the learned network structures.  

5 Conclusion 

In this paper we developed a new method for learning Bayesian network structures 

taking into account labelled data about the existence of edges given by heterogeneous 

experts, i.e., experts with different levels of accuracy in labelling. Our preliminary 

experiments show that, if experts are reasonably accurate, this new method improves 

upon learning Bayesian networks from data or expert knowledge alone. Additionally, 

in such reasonable settings, estimating the accuracy of each individual expert im-

proves upon a method where a fixed accuracy among expert is assumed, even if we 

would know the exact average accuracy of the experts. In conclusion, our method 

seems to be a promising approach for learning Bayesian network from both data and 

expert knowledge. 

 

Table 2. The results obtained by the ‘Worse’ population for the ‘Insurance’ network. 

  
0.3 

 
0.4 

 
0.5 

 
0.6 

SHD NDR SHD NDR SHD NDR SHD NDR 

Only Data 28.8 0.47  28.8 0.47  28.8 0.47  28.8 0.47 

Only Knowledge 68.5 0.50  52.5 0.49  32.0 0.34  26.4 0.27 

Our Method 33.9 0.39  32.8 0.44  21.1 0.32  21.0 0.34 

Best Equal Conf. 25.3 0.41  22.6 0.36  24.9 0.41  24.7 0.39 

Best Mult. Conf. 18.7 0.31  15.4 0.26  17.4 0.30  15.2 0.26 

 

Table 3. The results obtained by the ‘Better’ population for the ‘Insurance’ network. 

  
0.3 

 
0.4 

 
0.5 

 
0.6 

SHD NDR SHD NDR SHD NDR SHD NDR 

Only Data 28.8 0.47  28.8 0.47  28.8 0.47  28.8 0.47 

Only Knowledge 47.7 0.38  23.9 0.23  12.3 0.15  7.7 0.09 

Our Method 23.9 0.35  16.1 0.25  15.7 0.27  12.9 0.23 

Best Equal Conf. 21.9 0.35  17.9 0.29  21.2 0.34  19.6 0.32 

Best Mult. Conf. 15.3 0.26  13.2 0.23  11.7 0.21  10.2 0.18 



Table 4. The results obtained by the ‘Worse’ population for the ‘Alarm’ network. 

  
0.3 

 
0.4 

 
0.5 

 
0.6 

SHD NDR SHD NDR SHD NDR SHD NDR 

Only Data 27.5 0.47  27.5 0.47  27.5 0.47  27.5 0.47 

Only Knowledge 86.7 0.54  62.5 0.46  55.6 0.43  71.2 0.40 

Our Method 51.2 0.42  29.5 0.41  37.6 0.47  34.1 0.35 

Best Equal Conf. 24.2 0.42  24.5 0.43  26.4 0.45  18.8 0.33 

Best Mult. Conf. 18.1 0.30  11.4 0.19  11.5 0.20  9.8 0.17 

 

Table 5. The results obtained by the ‘Better’ population for the ‘Alarm’ network. 

  
0.3 

 
0.4 

 
0.5 

 
0.6 

SHD NDR SHD NDR SHD NDR SHD NDR 

Only Data 27.5 0.47  27.5 0.47  27.5 0.47  27.5 0.47 

Only Knowledge 48.4 0.38  39.1 0.30  17.4 0.13  18.4 0.12 

Our Method 25.1 0.33  19.6 0.27  13.4 0.20  10.9 0.18 

Best Equal Conf. 15.0 0.26  14.9 0.27  13.4 0.23  15.4 0.28 

Best Mult. Conf. 10.1 0.18  8.7 0.14  5.3 0.10  4.9 0.10 
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