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Abstract There is a consensus among researchers that, to improve the performance of

multi-label learning algorithms, label dependencies have to be incorporated into the learn-

ing process. However, the benefit of exploiting label dependence in multi-label classification

(MLC) is known to be closely dependent on the type of loss to be minimized. In this study,

we show that identifying the irreducible factors in the factorization of the conditional dis-

tribution of the label set given the input features can play a pivotal role for MLC in the

context of zero-one loss minimization, as it divides the learning task into simpler indepen-

dent problems. We establish theoretical results to characterize and identify the irreducible

label factors under various assumptions about the underlying probability distribution (i.e.,

Composition, Intersection, DAG-Faithfulness), which lays the foundation for practical ir-

reducible label factor decomposition procedures for these subclasses of distributions. This

discussion extends prior works published in ESWA1 and recently presented at ICML2.

Keywords multi-label learning · probabilistic graphical models · Markov boundary

discovery · subset zero-one loss

Contribution summary

From a Bayesian point of view, multi-label learning amounts to modeling the conditional

joint distribution p(Y | X). The key question is: what shall we capture from p(Y | X) exactly

to solve the MLC problem? In a recent paper, Dembczynsk et al. showed that the expected

benefit of exploiting label dependence depends on the type of loss to be minimized and,

most importantly, one cannot expect the same MLC method to be optimal for different types

of losses at the same time. In particular, minimizing the subset 0/1 loss, the F-measure loss
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or the Jaccard index requires the modeling of the joint distribution (at least to some extent).

In this study, we are mainly concerned with risk-minimizing prediction for the subset 0/1

loss. We establish several theorems, under the assumption that the probability distribution

satisfies the Composition, the Intersection or the DAG-Faithfulness properties, to character-

ize the so-called irreducible label factors (ILFs), that appear as (unique) irreducible factors

in the factorization of the conditional distribution of the label set given the input features

(i.e., minimal subsets YLF ⊆ Y such that YLF ⊥⊥ Y\YLF | X). The ILF characterization for

any distribution p follows,

Theorem 0.1. Let G be an undirected graph whose nodes correspond to the random vari-

ables in Y and in which two nodes Yi and Yj are adjacent iff there exists Z ⊆ Y \ {Yi,Yj}
such that {Yi} 6⊥⊥ {Yj} | (X∪Z). Then, two labels Yi and Yj belong to the same irreducible

label factor iff a path exists between Yi and Yj in G .

In view of this result, the process of deciding upon whether ∃Z ⊆ Y\{Yi,Yj} such that

{Yi} 6⊥⊥ {Yj} | (X∪Z) is a combinatorial problem and may be challenging as the number

of possible combinations for Z grows very quickly with the number of labels. In addition,

performing a statistical test of independence conditioned on X∪Z may become problematic

in discrete data, where the sample size required for high-confidence grows exponentially in

the size of the conditioning set. Fortunately, we may derive more convenient characteriza-

tions if we assume the Intersection, the Composition or the DAG-Faithfulness property (see

paper for further details). Examples of decomposition graphs learned from multi-label data

sets are shown in Figure 1.
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Fig. 1 Label decomposition graphs G obtained on Slashdot and Corel5 for illustration purposes.

In conclusion, the present analysis prepares the ground for a generic class of MLC de-

composition procedures - that may be implemented in different manners - which are correct

under a given set of assumptions underlying the joint distribution (e.g. Composition, Inter-

section, DAG-Faithfulness properties). Our experimental results demonstrate the usefulness

of the ILF decomposition for the MLC problem under subset 0/1 loss.


