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Abstract

Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these
problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical
efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label
embeddings that uncovers a fast label embedding algorithm which works in both the multiclass and multilabel set-
tings. The result is a randomized algorithm whose running time is exponentially faster than naive algorithms. We
demonstrate our techniques on two large-scale public datasets, from the Large Scale Hierarchical Text Challenge and
the Open Directory Project, where we obtain state of the art results.

1 Contributions
We provide a statistical motivation for label embedding by demonstrating that the optimal rank-constrained least
squares estimator can be constructed from an optimal unconstrained estimator of an embedding of the labels. Thus,
embedding can provide beneficial sample complexity reduction even if computational constraints are not binding.

We identify a natural object to define label similarity: the expected outer product of the conditional label proba-
bilities. In particular, in conjunction with a low-rank constraint, this indicates two label embeddings are similar when
their conditional probabilities are linearly dependent across the dataset. This unifies prior work utilizing the confusion
matrix for multiclass [1] and the empirical label covariance for multilabel [5].

We apply techniques from randomized linear algebra [3] to develop an efficient and scalable algorithm for con-
structing the embeddings, essentially via a novel randomized algorithm. Intuitively, this technique implicitly decom-
poses the prediction matrix of a model which would be prohibitively expensive to form explicitly.

2 Proposed Algorithm
Our proposal is Rembrandt, described in Algorithm 1. We use the top right singular space of ΠX,LY as a label
embedding, or equivalently, the top principal components of Y >ΠX,LY . Using randomized techniques, we can

Algorithm 1 Rembrandt: Response EMBedding via RANDomized Techniques

1: function REMBRANDT(k,X ∈ Rn×d, Y ∈ Rn×c)
2: (p, q)← (20, 1) . These hyperparameters rarely need adjustment.
3: Q← randn(c, k + p)
4: for i ∈ {1, . . . , q} do . Randomized range finder for Y >ΠX,LY
5: Z ← arg min ‖Y Q−XZ‖2F
6: Q← orthogonalize(Y >XZ)
7: end for . NB: total of (q + 1) data passes, including next line
8: F ← (Y >XQ)>(Y >XQ) . F ∈ R(k+p)×(k+p) is “small”
9: (V,Σ2)← eig(F, k)

10: V ← QV . V ∈ Rc×k is the embedding
11: return (V,Σ)
12: end function
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Table 1: Data sets used for experimentation and times to compute an embedding. Timings are for a Matlab implemen-
tation on a standard desktop (dual 3.2Ghz Xeon E5-1650 CPU and 48Gb of RAM).

Dataset Type Modality Examples Features Classes Rembrandt
k Time (sec)

ODP Multiclass Text ∼ 1.5M ∼ 0.5M ∼ 100K 300 6,530
LSHTC Multilabel Text ∼ 2.4M ∼ 1.6M ∼ 325K 500 8,006

decompose this matrix without explicitly forming it, because we can compute the product of ΠX,LY with another
matrix Q via Y >ΠX,LY Q = Y >XZ∗ where Z∗ = arg minZ∈Rd×(k+p) ‖Y Q−XZ‖2F . Algorithm 1 is a specialization
of randomized PCA to this particular form of the matrix multiplication operator.

Algorithm 1 is inexpensive to compute. The matrix vector product Y Q is a sparse matrix-vector product so
complexity O(nsk) depends only on the average (label) sparsity per example s and the embedding dimension k, and
is independent of the number of classes c. The fit is done in the embedding space and therefore is independent of the
number of classes c, and the outer product with the predicted embedding is again a sparse product with complexity
O(nsk). The orthogonalization step is O(ck2), but this is amortized over the data set and essentially irrelevant as long
as n > c. Furthermore random projection theory suggests k should grow only logarithmically with c.

3 Experiments

Table 2: ODP results. k = 300 for all embedding strategies. RE = Rembrandt; CS = compressed sensing; PCA =
unsupervised (feature) embedding; LT = LomTree [2]; “A+LR” = logistic regression on representation A.

Method RE + LR CS + LR PCA + LR LT
Test Error 83.15% 85.14% 90.37% 93.46%
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Table 3: LSHTC results. FastXML and LPSR-NB are from [4]. “A+ILR” = independent logistic regression on
representation A.

Method RE (k = 800) + ILR RE (k = 500) + ILR FastXML LPSR-NB
Precision-at-1 53.39% 52.84% 49.78% 27.91%
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