
Introduction Theoretical analysis Algorithm Empirical verification Summary

Logarithmic Time Online Multiclass prediction

Anna Choromanska

Courant Institute of Mathematical Sciences
New York University

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Problem setting:

classification with large number of classes

data is accessed online

Goal:

good predictor with logarithmic training and testing time

reduction to tree-structured binary classification

top-down approach for class partitioning allowing gradient
descent style optimization

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

eXtreme multi-class classification problem

. . .

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

What was already done...

Intractable

one-against-all [RK04]
variants of ECOC [DB95], e.g. PECOC [LB05]
clustering-based approaches [BWG10, WMY13]

Choice of partition not addressed

Filter Tree and error-correcting tournaments [BLR09]

Choice of partition addressed, but dedicated to conditional
probability estimation

conditional probability tree [BLLSS09]

Splitting criteria not well-suited to large class setting

decision trees [KM95]

. . .

Introduction Theoretical analysis Algorithm Empirical verification Summary

Multi-class classification problem

O(log k) time

Theorem

There exists multi-class classification problems where achieving 0
error rate requires Ω(log k) time to train or test per example.

Proof.

Follows from information theory[CT91].

Any multi-class classification algorithm must uniquely specify the
bits of all labels that it predicts correctly on. Consequently, Kraft’s
inequality [CT91, Equation 5.6] implies that the expected
computational complexity of predicting correctly is Ω(H(Y)) per
example where H(Y) is the Shannon entropy of the label. For the
worst case distribution on k classes, this implies Ω(log(k))
computation is required.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g.
if you do {1, 7} vs {3, 8}, the next problem is hard;
if you do {1, 8} vs {3, 7}, the next problem is easy;
if you do {1, 3} vs {7, 8}, the next problem is easy.

[BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g.
if you do {1, 7} vs {3, 8}, the next problem is hard;
if you do {1, 8} vs {3, 7}, the next problem is easy;
if you do {1, 3} vs {7, 8}, the next problem is easy.

[BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

How do you learn the structure?

Our approach [CL15, CCB15, CAL13]:

top-down approach for class partitioning

splitting criterion guaranteeing
balanced tree ⇒ logarithmic training and testing time
and
small classification error

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balancedness: nr
n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balancedness: nr
n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balancedness: nr
n

Measure of purity: kr(x)
k(x)

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balancedness: nr
n Measure of purity: kr(x)

k(x)

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Objective function

J(h) = 2
k∑

y=1

πy |P(h(x) > 0)− P(h(x) > 0|y)|

= 2Ex ,y [|P(h(x) > 0)− P(h(x) > 0|y)|]

J(h) ⇒ Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a
partitioner h that maximizes the objective.

Lemma

For any hypothesis h : X 7→ {−1, 1}, the objective J(h) satisfies
J(h) ∈ [0, 1]. Furthermore, h induces a maximally pure and
balanced partition iff J(h) = 1.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Balancing and purity factors

Balancing factor

balance ∈

[
1−

√
1− J(h)

2
,

1 +
√

1− J(h)

2

]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

J(h)

y

y =
1−
√

1−J(h)

2

y =
1+
√

1−J(h)

2

Introduction Theoretical analysis Algorithm Empirical verification Summary

Splitting criterion

Balancing and purity factors

Purity factor

purity ≤ 2− J(h)

4 · balance
− balance

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

J(h)

y

balance = 1/2

y = 2−J (h)
4·balance − balance

Introduction Theoretical analysis Algorithm Empirical verification Summary

Boosting statement

What is the quality of obtained tree?

In each node of the tree T optimize the splitting criterion

Apply recursively to construct a tree structure

Measure the quality of the tree using entropy

GT =
∑

l∈leafs of T
wl

k∑
y=1

πl ,y ln

(
1

πl ,y

)
Why?

Small entropy of leafs ⇒ pure leafs

Goal: maximizing the objective reduces the entropy

Introduction Theoretical analysis Algorithm Empirical verification Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T , and let βm = P(hm(x) > 0)
and Pm,y = P(hm(x) > 0|y). Furthermore, let γ ∈ R+ be such
that for all m, γ ∈ (0,min(βm, 1− βm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution P over
X at each node m of the tree T there exists a hypothesis hm ∈ H
such that J(hm)/2 =

∑k
y=1 πm,y |Pm,y − βm| ≥ γ.

Theorem

Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to

obtain GT ≤ ε it suffices to make
(

1
ε

) 4(1−γ)2ln k

γ2 splits.

Tree depth ≈ log

[(
1
ε

) 4(1−γ)2ln k

γ2

]
= O(ln k) ⇒

⇒ logarithmic training and testing time

Introduction Theoretical analysis Algorithm Empirical verification Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T , and let βm = P(hm(x) > 0)
and Pm,y = P(hm(x) > 0|y). Furthermore, let γ ∈ R+ be such
that for all m, γ ∈ (0,min(βm, 1− βm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution P over
X at each node m of the tree T there exists a hypothesis hm ∈ H
such that J(hm)/2 =

∑k
y=1 πm,y |Pm,y − βm| ≥ γ.

Theorem

Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to

obtain GT ≤ ε it suffices to make
(

1
ε

) 4(1−γ)2ln k

γ2 splits.

Tree depth ≈ log

[(
1
ε

) 4(1−γ)2ln k

γ2

]
= O(ln k) ⇒

⇒ logarithmic training and testing time

Introduction Theoretical analysis Algorithm Empirical verification Summary

Boosting statement

What is the quality of obtained tree?

Connection to other entropy functions, like

Gini-entropy:
GT =

∑
l∈leafs of T wl

∑k
y=1 πl ,y (1− πl ,y)

and its modified version:
GT =

∑
l∈leafs of T wl

∑k
y=1

√
πl ,y (C − πl ,y)

can be found in [CCB15].

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|].

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|].

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|].

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

Pseudo-code
Input: regression algorithm R, max number of tree non-leaf nodes T , swap resistance RS

Subroutine SetNode (v)
mv = ∅ (mv (y) - sum of the scores for class y)
lv = ∅ (lv (y) - number of points of class y reaching v)
nv = ∅ (nv (y) - number of points of class y which are used to train regressor in v)
ev = ∅ (ev (y) - expected score for class y)
Ev = 0 (expected total score)
Cv = 0 (the size of the smallest leaf in the subtree with root v)

Subroutine UpdateC (v)
While (v 6= r AND Cparent(v) 6= Cv) {v = parent(v); Cv = min(Cleft(v), Cright(v))}
Create root r = 0: SetNode (r); t = 1
For each example (x, y) do

Set j = r
While j is not a leaf do

If (lj (y) = ∅)
mj (y) = 0; lj (y) = 0; nj (y) = 0; ej (y) = 0

If
(
Ej > ej (y)

)
c =−1 Else c = 1

Train hj with example (x, c): R(x, c)

lj (y)++; nj (y) ++; mj (y) += hj (x); ej (y) = mj (y)/nj (y); Ej =

∑k
i=1 mj (i)∑k
i=1

nj (i)
]

Set j to the child of j corresponding to hj
If(j is a leaf)

lj (y)++
If(lj has at least 2 non-zero entries)

If(t<T OR Cj−maxi lj (i)>RS (Cr+1))
If (t<T)

SetNode (left(j)); SetNode (right(j)); t++
Else Swap(j)
Cleft(j)=b∗Cj/2; Cright(j)=Cj−Cleft(j); UpdateC (left(j))

Cj++

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

Swapping

Subroutine Swap (v)
———————————————————————————————————–
Find a leaf s for which (Cs = Cr)
spa=parent(s); sgpa=grandpa(s); ssib=sibling(s)
If (spa = left(sgpa)) left(sgpa) = ssib Else right(sgpa) = ssib
UpdateC (ssib); SetNode (s); left(v) = s; SetNode (spa); right(v) = spa
———————————————————————————————————–

Node j splits if the following holds:

Cj − max
i∈{1,2,...,k}

lj(i) > RS(Cr + 1),

Lemma

Let the swap resistance RS be greater or equal to 4. Then for all
sequences of examples, the number of times Algorithm ?? recycles
any given node is upper-bounded by the logarithm (with base 2) of
the sequence length.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

Swapping

Subroutine Swap (v)
———————————————————————————————————–
Find a leaf s for which (Cs = Cr)
spa=parent(s); sgpa=grandpa(s); ssib=sibling(s)
If (spa = left(sgpa)) left(sgpa) = ssib Else right(sgpa) = ssib
UpdateC (ssib); SetNode (s); left(v) = s; SetNode (spa); right(v) = spa
———————————————————————————————————–

Node j splits if the following holds:

Cj − max
i∈{1,2,...,k}

lj(i) > RS(Cr + 1),

Lemma

Let the swap resistance RS be greater or equal to 4. Then for all
sequences of examples, the number of times Algorithm ?? recycles
any given node is upper-bounded by the logarithm (with base 2) of
the sequence length.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Online partitioning

Swapping

r
. . .

j . . .
. . .

. . . sgpa
. . . spa

s ssib
.

r
. . .

j

s spa

. . .

. . .

. . . sgpa
. . . ssib
.

Figure : Illustration of the swapping procedure. Left: before the swap,
right: after the swap.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Performance on real datasets

Experiments

Table : Training time on selected problems.
Isolet Sector Aloi

LOMtree 16.27s 12.77s 51.86s
OAA 19.58s 18.37s 11m2.43s

Table : Per-example test time on all problems.
Isolet Sector Aloi ImNet ODP

LOMtree 0.14ms 0.13ms 0.06ms 0.52ms 0.26ms
OAA 0.16 ms 0.24ms 0.33ms 0.21s 1.05s

Table : Test error (%) and confidence interval on all problems.

LOMtree Rtree Filter tree

Isolet (26) 6.36±1.71 16.92±2.63 15.10±2.51

Sector (105) 16.19±2.33 15.77±2.30 17.70±2.41

Aloi (1000) 16.50±0.70 83.74±0.70 80.50±0.75

ImNet (22K) 90.17±0.05 96.99±0.03 92.12±0.04

ODP (105K) 93.46±0.12 93.85±0.12 93.76±0.12

Introduction Theoretical analysis Algorithm Empirical verification Summary

Performance on real datasets

Experiments

26 105 1000 21841 105033
0

0.2

0.4

0.6

0.8

1

number of classes

ac
cu

ra
cy

LOMtree vs one−against−all

OAA
LOMtree

6 8 10 12 14 16

2

4

6

8

10

12

log
2
(number of classes)

lo
g

2(t
im

e
ra

tio
)

LOMtree vs one−against−all

Introduction Theoretical analysis Algorithm Empirical verification Summary

Conclusions

New algorithm:

Reduction from multi-class to binary classification

New splitting criterion with desirable properties

Logarithmic training and testing time

Introduction Theoretical analysis Algorithm Empirical verification Summary

References

Logarithmic Time Online Multiclass prediction, Anna
Choromanska, John Langford, NIPS 2015

On the boosting ability of top-down decision tree learning
algorithm for multiclass classiffication, A. Choromanska1, K.
Choromanski1, M. Bojarski, 2015 (submitted)

1equal contribution

Introduction Theoretical analysis Algorithm Empirical verification Summary

Acknowledgments

We would like to thank Alekh Agarwal, Dean Foster, Robert
Schapire and Matus Telgarsky for valuable discussions.

Introduction Theoretical analysis Algorithm Empirical verification Summary

Thank you!!!

	Introduction
	Multi-class classification problem

	Theoretical analysis
	Splitting criterion
	Boosting statement

	Algorithm
	Online partitioning

	Empirical verification
	Performance on real datasets

	Summary

