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Multi-class classification problem

eXtreme multi-class classification problem

Problem setting:

classification with large number of classes

data is accessed online

Goal:

good predictor with logarithmic training and testing time

reduction to tree-structured binary classification

top-down approach for class partitioning allowing gradient
descent style optimization
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Multi-class classification problem

What was already done...

Intractable

one-against-all [RK04]
variants of ECOC [DB95], e.g. PECOC [LB05]
clustering-based approaches [BWG10, WMY13]

Choice of partition not addressed

Filter Tree and error-correcting tournaments [BLR09]

Choice of partition addressed, but dedicated to conditional
probability estimation

conditional probability tree [BLLSS09]

Splitting criteria not well-suited to large class setting

decision trees [KM95]

. . .
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Multi-class classification problem

O(log k) time

Theorem

There exists multi-class classification problems where achieving 0
error rate requires Ω(log k) time to train or test per example.

Proof.

Follows from information theory[CT91].

Any multi-class classification algorithm must uniquely specify the
bits of all labels that it predicts correctly on. Consequently, Kraft’s
inequality [CT91, Equation 5.6] implies that the expected
computational complexity of predicting correctly is Ω(H(Y )) per
example where H(Y ) is the Shannon entropy of the label. For the
worst case distribution on k classes, this implies Ω(log(k))
computation is required.
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Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g.
if you do {1, 7} vs {3, 8}, the next problem is hard;
if you do {1, 8} vs {3, 7}, the next problem is easy;
if you do {1, 3} vs {7, 8}, the next problem is easy.

[BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.
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Splitting criterion

How do you learn the structure?

Our approach [CL15, CCB15, CAL13]:

top-down approach for class partitioning

splitting criterion guaranteeing
balanced tree ⇒ logarithmic training and testing time
and
small classification error
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Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balancedness: nr
n
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Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.
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Splitting criterion

Objective function

J(h) = 2
k∑

y=1

πy |P(h(x) > 0)− P(h(x) > 0|y)|

= 2Ex ,y [|P(h(x) > 0)− P(h(x) > 0|y)|]

J(h) ⇒ Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a
partitioner h that maximizes the objective.

Lemma

For any hypothesis h : X 7→ {−1, 1}, the objective J(h) satisfies
J(h) ∈ [0, 1]. Furthermore, h induces a maximally pure and
balanced partition iff J(h) = 1.
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Splitting criterion

Balancing and purity factors

Balancing factor

balance ∈

[
1−

√
1− J(h)

2
,

1 +
√

1− J(h)

2
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Splitting criterion

Balancing and purity factors

Purity factor

purity ≤ 2− J(h)

4 · balance
− balance
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Boosting statement

What is the quality of obtained tree?

In each node of the tree T optimize the splitting criterion

Apply recursively to construct a tree structure

Measure the quality of the tree using entropy

GT =
∑

l∈leafs of T
wl

k∑
y=1

πl ,y ln

(
1

πl ,y

)
Why?

Small entropy of leafs ⇒ pure leafs

Goal: maximizing the objective reduces the entropy
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Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T , and let βm = P(hm(x) > 0)
and Pm,y = P(hm(x) > 0|y). Furthermore, let γ ∈ R+ be such
that for all m, γ ∈ (0,min(βm, 1− βm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution P over
X at each node m of the tree T there exists a hypothesis hm ∈ H
such that J(hm)/2 =

∑k
y=1 πm,y |Pm,y − βm| ≥ γ.

Theorem

Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to

obtain GT ≤ ε it suffices to make
(

1
ε

) 4(1−γ)2ln k

γ2 splits.

Tree depth ≈ log

[(
1
ε

) 4(1−γ)2ln k

γ2

]
= O(ln k) ⇒

⇒ logarithmic training and testing time
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Boosting statement

What is the quality of obtained tree?

Connection to other entropy functions, like

Gini-entropy:
GT =

∑
l∈leafs of T wl

∑k
y=1 πl ,y (1− πl ,y )

and its modified version:
GT =

∑
l∈leafs of T wl

∑k
y=1

√
πl ,y (C − πl ,y )

can be found in [CCB15].
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Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y ]|].

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.
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Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n
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Online partitioning

Pseudo-code
Input: regression algorithm R, max number of tree non-leaf nodes T , swap resistance RS

Subroutine SetNode (v)
mv = ∅ (mv (y) - sum of the scores for class y)
lv = ∅ (lv (y) - number of points of class y reaching v)
nv = ∅ (nv (y) - number of points of class y which are used to train regressor in v)
ev = ∅ (ev (y) - expected score for class y)
Ev = 0 (expected total score)
Cv = 0 (the size of the smallest leaf in the subtree with root v)

Subroutine UpdateC (v)
While (v 6= r AND Cparent(v) 6= Cv ) {v = parent(v); Cv = min(Cleft(v), Cright(v))}
Create root r = 0: SetNode (r); t = 1
For each example (x, y) do

Set j = r
While j is not a leaf do

If (lj (y) = ∅)
mj (y) = 0; lj (y) = 0; nj (y) = 0; ej (y) = 0

If
(
Ej > ej (y)

)
c =−1 Else c = 1

Train hj with example (x, c): R(x, c)

lj (y)++; nj (y) ++; mj (y) += hj (x); ej (y) = mj (y)/nj (y); Ej =

∑k
i=1 mj (i)∑k
i=1

nj (i)
]

Set j to the child of j corresponding to hj
If(j is a leaf)

lj (y)++
If(lj has at least 2 non-zero entries)

If(t<T OR Cj−maxi lj (i)>RS (Cr+1))
If (t<T )

SetNode (left(j)); SetNode (right(j)); t++
Else Swap(j)
Cleft(j)=b∗Cj/2; Cright(j)=Cj−Cleft(j); UpdateC (left(j))

Cj++
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Online partitioning

Swapping

Subroutine Swap (v)
———————————————————————————————————–
Find a leaf s for which (Cs = Cr )
spa=parent(s); sgpa=grandpa(s); ssib=sibling(s)
If (spa = left(sgpa)) left(sgpa) = ssib Else right(sgpa) = ssib
UpdateC (ssib); SetNode (s); left(v) = s; SetNode (spa); right(v) = spa
———————————————————————————————————–

Node j splits if the following holds:

Cj − max
i∈{1,2,...,k}

lj(i) > RS(Cr + 1),

Lemma

Let the swap resistance RS be greater or equal to 4. Then for all
sequences of examples, the number of times Algorithm ?? recycles
any given node is upper-bounded by the logarithm (with base 2) of
the sequence length.
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Online partitioning

Swapping

r
. . .

j . . .
. . .

. . . sgpa
. . . spa

s ssib
. . . . . .

r
. . .

j

s spa

. . .

. . .

. . . sgpa
. . . ssib
. . . . . .

Figure : Illustration of the swapping procedure. Left: before the swap,
right: after the swap.
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Performance on real datasets

Experiments

Table : Training time on selected problems.
Isolet Sector Aloi

LOMtree 16.27s 12.77s 51.86s
OAA 19.58s 18.37s 11m2.43s

Table : Per-example test time on all problems.
Isolet Sector Aloi ImNet ODP

LOMtree 0.14ms 0.13ms 0.06ms 0.52ms 0.26ms
OAA 0.16 ms 0.24ms 0.33ms 0.21s 1.05s

Table : Test error (%) and confidence interval on all problems.

LOMtree Rtree Filter tree

Isolet (26) 6.36±1.71 16.92±2.63 15.10±2.51

Sector (105) 16.19±2.33 15.77±2.30 17.70±2.41

Aloi (1000) 16.50±0.70 83.74±0.70 80.50±0.75

ImNet (22K) 90.17±0.05 96.99±0.03 92.12±0.04

ODP (105K) 93.46±0.12 93.85±0.12 93.76±0.12
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Performance on real datasets

Experiments
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Conclusions

New algorithm:

Reduction from multi-class to binary classification

New splitting criterion with desirable properties

Logarithmic training and testing time
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