Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary

Logarithmic Time Online Multiclass prediction

Anna Choromanska

Courant Institute of Mathematical Sciences New York University

Theoretical analysis

Algorithm

Empirical verification 00

Summary

Multi-class classification problem

eXtreme multi-class classification problem

Problem setting:

- classification with large number of classes
- data is accessed online

Goal:

- good predictor with logarithmic training and testing time
- reduction to tree-structured binary classification
- top-down approach for class partitioning allowing gradient descent style optimization

Theoretical analysis

Multi-class classification problem

Theoretical analysis

Empirical verification

Summary

Multi-class classification problem

Theoretical analysi: 00000000000

Empirical verification

Summary

Multi-class classification problem

Theoretical analysis

Empirical verification

Summary

Multi-class classification problem

Theoretical analysis

Empirical verification

Summary

Multi-class classification problem

Theoretical analysis

Empirical verification

Summary

Multi-class classification problem

Theoretical analysis

• •

Empirical verification

Summary

Multi-class classification problem

Multi-class classification problem

What was already done...

Intractable

- one-against-all [RK04]
- variants of ECOC [DB95], e.g. PECOC [LB05]
- clustering-based approaches [BWG10, WMY13]
- Choice of partition not addressed
 - Filter Tree and error-correcting tournaments [BLR09]
- Choice of partition addressed, but dedicated to conditional probability estimation
 - conditional probability tree [BLLSS09]
- Splitting criteria not well-suited to large class setting
 - decision trees [KM95]

• . . .

Introduction 000000000●	Theoretical analysis	Algorithm ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Empirical verification	Summary
Multi-class classificati	on problem			
$\mathcal{O}(\log k)$ t	time			

Theorem

There exists multi-class classification problems where achieving 0 error rate requires $\Omega(\log k)$ time to train or test per example.

Proof.

Follows from information theory[CT91].

Any multi-class classification algorithm must uniquely specify the bits of all labels that it predicts correctly on. Consequently, Kraft's inequality [CT91, Equation 5.6] implies that the expected *computational* complexity of predicting correctly is $\Omega(H(Y))$ per example where H(Y) is the Shannon entropy of the label. For the worst case distribution on k classes, this implies $\Omega(\log(k))$ computation is required.

Theoretical analysis

Empirical verification

Summary

Splitting criterion

Introduction

How do you learn the structure?

Not all partitions are equally difficult, e.g. if you do {1,7} vs {3,8}, the next problem is hard; if you do {1,8} vs {3,7}, the next problem is easy; if you do {1,3} vs {7,8}, the next problem is easy.

Theoretical analysis

Empirical verification

Summary

Splitting criterion

How do you learn the structure?

- Not all partitions are equally difficult, e.g. if you do {1,7} vs {3,8}, the next problem is hard; if you do {1,8} vs {3,7}, the next problem is easy; if you do {1,3} vs {7,8}, the next problem is easy.
- [BWG10]: Better to confuse near leaves than near root. <u>Intuition:</u> The root predictor tends to be overconstrained while the leafwards predictors are less constrained.

Theoretical analysis

Empirical verification

Summary

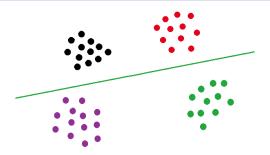
Splitting criterion

How do you learn the structure?

Our approach [CL15, CCB15, CAL13]:

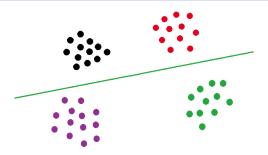
- top-down approach for class partitioning
- splitting criterion guaranteeing
 balanced tree ⇒ logarithmic training and testing time and
 small classification error
 - small classification error

Introduction 0000000000	Theoretical analysis	Algorithm ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Empirical verification	Summary
Splitting criterion				



- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r : number of data points on the right side of the partitioning
- n: total number of data points

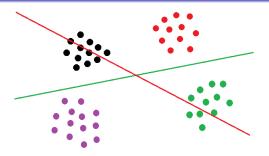
Introduction 0000000000	Theoretical analysis	Algorithm ००००००००००००००००००	Empirical verification	Summary
Splitting criterion				



- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r : number of data points on the right side of the partitioning
- n: total number of data points

Measure of balancedness: $\frac{n_r}{n}$

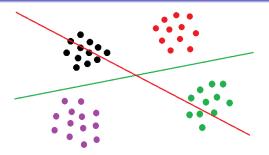
Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००००००	Empirical verification	Summary
Splitting criterion				



- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r : number of data points on the right side of the partitioning
- n: total number of data points

Measure of balancedness: $\frac{n_r}{n}$

Introduction 0000000000	Theoretical analysis	Algorithm ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Empirical verification	Summary
Splitting criterion				



- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r: number of data points on the right side of the partitioning
- n: total number of data points

Measure of balancedness: $\frac{n_r}{n}$ Measure

Measure of purity: $\frac{k_r(x)}{k(x)}$

Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary
Splitting criterion				
Pure split	and balance	d split		

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)

•
$$\pi_y = \frac{|\mathcal{X}_y|}{n}$$

- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००००००	Empirical verification	Summary
Splitting criterion				
Pure split	and balanced	split		

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)

•
$$\pi_y = \frac{|\mathcal{X}_y|}{n}$$

- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

 $\exists_{c \in (0,0,5]} c \leq \text{balance} \leq 1 - c.$

Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary	
Splitting criterion					
Pure split and balanced split					

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)

•
$$\pi_y = \frac{|\mathcal{X}_y|}{n}$$

- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

$$\exists_{c \in (0,0.5]} c \leq balance \leq 1 - c.$$

Definition (Pure split)

The hypothesis $h \in \mathcal{H}$ induces a pure split iff

 $\exists_{\delta \in [0,0,5)}$ purity $\leq \delta$.

Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००००००	Empirical verification	Summary
Splitting criterion				
Obiective	e function			

$$J(h) = 2\sum_{y=1}^{k} \pi_{y} |P(h(x) > 0) - P(h(x) > 0|y)|$$
$$= 2\mathbb{E}_{x,y} [|P(h(x) > 0) - P(h(x) > 0|y)|]$$

$J(h) \Rightarrow$ Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a **partitioner** h that maximizes the objective.

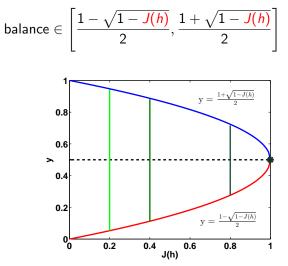
Lemma

For any hypothesis $h : \mathcal{X} \mapsto \{-1, 1\}$, the objective J(h) satisfies $J(h) \in [0, 1]$. Furthermore, h induces a maximally pure and balanced partition iff J(h) = 1.

Introduction 0000000000	Theoretical analysis	Algorithm 0000000000000000000000	Empirical verification	Summary
Splitting criterion				

Balancing and purity factors

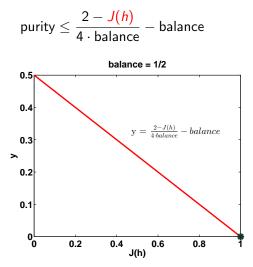
• Balancing factor



Introduction 0000000000	Theoretical analysis 0000000●000	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary
Splitting criterion				
— · · ·				

Balancing and purity factors

• Purity factor



Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary
Boosting statement				

What is the quality of obtained tree?

- $\bullet\,$ In each node of the tree ${\cal T}$ optimize the splitting criterion
- Apply recursively to construct a tree structure
- Measure the quality of the tree using entropy

$$G_{\mathcal{T}} = \sum_{I \in \text{leafs of } \mathcal{T}} w_I \sum_{y=1}^k \pi_{I,y} \ln \left(\frac{1}{\pi_{I,y}}\right)$$

Why?

Small entropy of leafs \Rightarrow pure leafs

Goal: maximizing the objective reduces the entropy

Theoretical analysis

Algorithm

Empirical verification

Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let *m* denotes any node of the tree \mathcal{T} , and let $\beta_m = P(h_m(x) > 0)$ and $P_{m,y} = P(h_m(x) > 0|y)$. Furthermore, let $\gamma \in \mathbb{R}^+$ be such that for all *m*, $\gamma \in (0, \min(\beta_m, 1 - \beta_m)]$. We say that the *weak hypothesis assumption* is satisfied when for any distribution \mathcal{P} over \mathcal{X} at each node *m* of the tree \mathcal{T} there exists a hypothesis $h_m \in \mathcal{H}$ such that $J(h_m)/2 = \sum_{y=1}^k \pi_{m,y} |P_{m,y} - \beta_m| \ge \gamma$.

Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in [0, 1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^2 \ln k}{\gamma^2}}$ splits.

Theoretical analysis

Algorithm

Empirical verification

Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let *m* denotes any node of the tree \mathcal{T} , and let $\beta_m = P(h_m(x) > 0)$ and $P_{m,y} = P(h_m(x) > 0|y)$. Furthermore, let $\gamma \in \mathbb{R}^+$ be such that for all *m*, $\gamma \in (0, \min(\beta_m, 1 - \beta_m)]$. We say that the *weak hypothesis assumption* is satisfied when for any distribution \mathcal{P} over \mathcal{X} at each node *m* of the tree \mathcal{T} there exists a hypothesis $h_m \in \mathcal{H}$ such that $J(h_m)/2 = \sum_{y=1}^k \pi_{m,y} |P_{m,y} - \beta_m| \ge \gamma$.

Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in [0, 1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^2 \ln k}{\gamma^2}}$ splits.

• Tree depth $\approx \log \left[\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^2 \ln k}{\gamma^2}} \right] = \mathcal{O}(\ln k) \Rightarrow$ \Rightarrow logarithmic training and testing time

Theoretical analysis

Empirical verification

Summary

Boosting statement

What is the quality of obtained tree?

Connection to other entropy functions, like

Gini-entropy:

$$G_{\mathcal{T}} = \sum_{l \in \text{leafs of } \mathcal{T}} w_l \sum_{y=1}^k \pi_{l,y} (1 - \pi_{l,y})$$
and its modified version:

$$G_{\mathcal{T}} = \sum_{l \in \text{leafs of } \mathcal{T}} w_l \sum_{y=1}^k \sqrt{\pi_{l,y} (\mathcal{C} - \pi_{l,y})}$$

can be found in [**C**CB15].

• Recall the objective function we consider at every tree node

 $J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$

<u>Problem</u>: discrete optimization <u>Relaxation</u>: drop the indicator operator and look at margins

• Recall the objective function we consider at every tree node

 $J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$

<u>Problem</u>: discrete optimization <u>Relaxation</u>: drop the indicator operator and look at margins

• Recall the objective function we consider at every tree node

$$J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$$

<u>Problem:</u> discrete optimization <u>Relaxation:</u> drop the indicator operator and look at margins

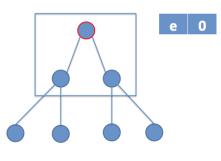
• The objective function becomes

$$J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[h(x)] - \mathbb{E}_{x}[h(x)|y]|].$$

- Keep the online empirical estimates of these expectations.
- The sign of the difference of two expectations decides whether to send an example to the left or right child node.

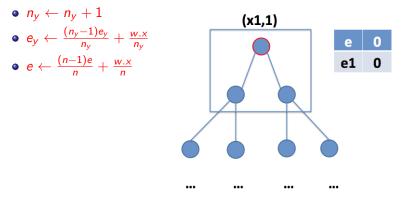
Introduction 0000000000	Theoretical analysis	Algorithm ⊙●○○○○○○○○○○○○○○○	Empirical verification	Summary
Online partitioning				
LOMtree	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



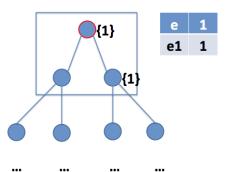
Introduction 0000000000	Theoretical analysis	Algorithm ००●००००००००००००००	Empirical verification	Summary	
Online partitioning					
LOMtree algorithm					

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)



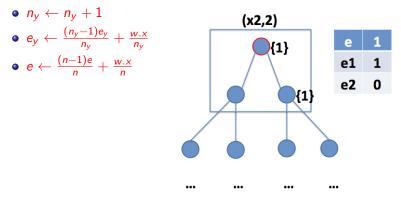
Introduction 0000000000	Theoretical analysis	Algorithm ०००●००००००००००००	Empirical verification	Summary	
Online partitioning					
I OMtree algorithm					

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



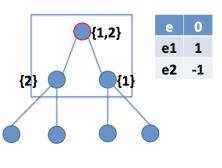
Introduction 0000000000	Theoretical analysis	Algorithm ००००●००००००००००००	Empirical verification	Summary	
Online partitioning					
LOMtree algorithm					

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)



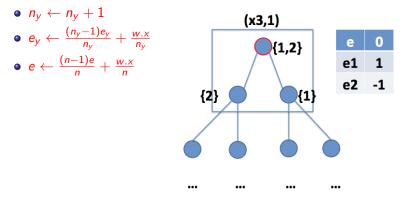
Introduction 0000000000	Theoretical analysis	Algorithm ०००००●०००००००००००	Empirical verification	Summary		
Online partitioning						
LOMtree	algorithm					

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



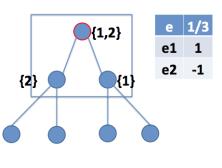
Introduction 0000000000	Theoretical analysis	Algorithm ○○○○○○●○○○○○○○○○○	Empirical verification	Summary
Online partitioning				
I OMtree	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)



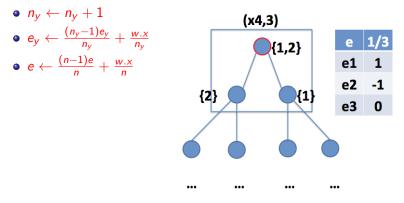
Introduction 0000000000	Theoretical analysis	Algorithm ०००००००●०००००००००	Empirical verification	Summary
Online partitioning				
I OMtree	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



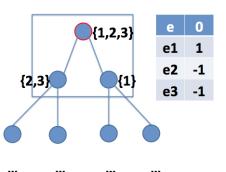
Introduction 0000000000	Theoretical analysis	Algorithm ○○○○○○○○○○○○○○○○○○	Empirical verification	Summary
Online partitioning				
	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)



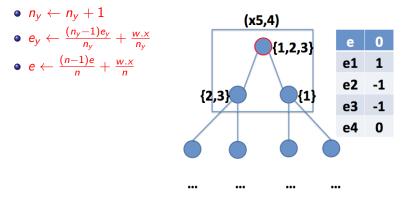
Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary
Online partitioning				
LOMtree	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



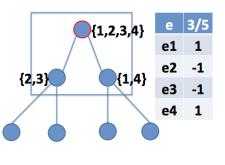
Introduction 0000000000	Theoretical analysis	Algorithm ○○○○○○○○○○○○○○○○○	Empirical verification	Summary
Online partitioning				
	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)



Introduction 0000000000	Theoretical analysis	Algorithm ००००००००००●००००००	Empirical verification	Summary
Online partitioning				
1 OMtree	algorithm			

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$



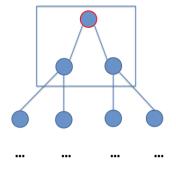
Introduction 0000000000	Theoretical analysis	Algorithm ○○○○○○○○○○○○○○○○○○	Empirical verification	Summary
Online partitioning				

LOMtree algorithm

Let e = 0 and for all y, $e_y = 0$, $n_y = 0$ For each example (x, y)

- if $e_v < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

Apply recursively to construct a tree structure.



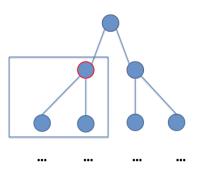
Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary
Online partitioning				
	1. 1. 1. 1			

LOMtree algorithm

Let e = 0 and for all y, $e_y = 0$, $n_y = 0$ For each example (x, y)

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

Apply recursively to construct a tree structure.



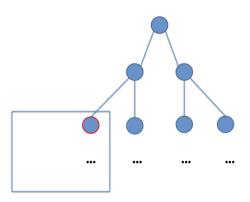
Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००●०००	Empirical verification	Summary
Online partitioning				
LOMtree	algorithm			

- if $e_v < e$ then b = -1 else b = 1
- Update w using (x, b)

•
$$n_y \leftarrow n_y + 1$$

• $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$
• $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

Apply recursively to construct a tree structure.



Introduction 000000000	Theoretical analysis 00000000000	Algorithm ०००००००००००००००	Empirical verification	Summary
Online partitioning				

Pseudo-code

Input: regression algorithm R, max number of tree non-leaf nodes T, swap resistance R_S Subroutine **SetNode** (v)

 $\mathbf{m}_{V} = \emptyset \quad (\mathbf{m}_{V}(y) - \text{sum of the scores for class } y)$ $\mathbf{I}_{v} = \emptyset$ ($\mathbf{I}_{v}(y)$ - number of points of class y reaching v) $\mathbf{n}_{v} = \emptyset$ ($\mathbf{n}_{v}(v)$) - number of points of class v which are used to train regressor in v) $\mathbf{e}_{v} = \emptyset$ ($\mathbf{e}_{v}(v)$ - expected score for class v) $\mathbf{E}_{\nu} = 0$ (expected total score) $C_v = 0$ (the size of the smallest leaf in the subtree with root v) Subroutine UpdateC (v)While $(v \neq r \text{ AND } C_{\text{PARENT}(v)} \neq C_v)$ $\{v = \text{PARENT}(v); C_v = \min(C_{\text{LEFT}(v)}, C_{\text{RIGHT}(v)})\}$ Create root r = 0: SetNode (r); t = 1For each example (\mathbf{x}, \mathbf{y}) do Set j = rWhile j is not a leaf do If $(I_i(y) = \emptyset)$ $m_j(y) = 0; \quad l_j(y) = 0; \quad n_j(y) = 0; \quad e_j(y) = 0$ If $(E_i > e_i(y))$ c = -1 Else c = 1**Train** h_i with example (\mathbf{x}, c) : $R(\mathbf{x}, c)$ $\mathbf{l}_{j}(y)$ ++; $\mathbf{n}_{j}(y)$ ++; $\mathbf{m}_{j}(y)$ += $h_{j}(\mathbf{x})$; $\mathbf{e}_{j}(y) = \mathbf{m}_{j}(y)/\mathbf{n}_{j}(y)$; $E_{j} = \frac{\sum_{i=1}^{k} \mathbf{m}_{j}(i)}{\sum_{i=1}^{k} \mathbf{n}_{i}(i)}$ **Set** *j* to the child of *j* corresponding to h_i If(*i* is a leaf) $I_{i}(y) + +$ If (I; has at least 2 non-zero entries) If $(t < T \text{ OR } C_i - \max_i I_i(i) > R_S(C_r+1))$ If (t < T)**SetNode** (LEFT(j)); **SetNode** (RIGHT(j)); t++Else Swap(i) $C_{\text{LEFT}(i)} = | *C_i/2; C_{\text{BIGHT}(i)} = C_i - C_{\text{LEFT}(i)}; UpdateC (\text{LEFT}(j))$ $C_i + +$

Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००००	Empirical verification	Summary
Online partitioning				
Swapping	5			
Subroutine S	wap (v)			

Find a leaf s for which $(C_s = C_r)$ s_{PA} =PARENT(s); s_{GPA} = GRANDPA(s); s_{SIB} =SIBLING(s) If $(s_{PA} = LEFT(s_{GPA}))$ LEFT $(s_{GPA}) = s_{SIB}$ Else RIGHT $(s_{GPA}) = s_{SIB}$ UpdateC (s_{SIB}) ; SetNode (s); LEFT(v) = s; SetNode (s_{PA}) ; RIGHT $(v) = s_{PA}$

Node *j* splits if the following holds:

$$C_j - \max_{i \in \{1,2,...,k\}} I_j(i) > R_S(C_r + 1),$$

Introduction 0000000000	Theoretical analysis	Algorithm ०००००००००००००००	Empirical verification	Summary
Online partitioning				
Swapping	ş			
Subroutine S	wap (v)			

Find a leaf s for which $(C_s = C_r)$ s_{PA} =PARENT(s); s_{GPA} = GRANDPA(s); s_{SIB} =SIBLING(s) If $(s_{PA} = LEFT(s_{GPA}))$ LEFT $(s_{GPA}) = s_{SIB}$ Else RIGHT $(s_{GPA}) = s_{SIB}$ UpdateC (s_{SIB}) ; SetNode (s); LEFT(v) = s; SetNode (s_{PA}) ; RIGHT $(v) = s_{PA}$

Node *j* splits if the following holds:

$$C_j - \max_{i \in \{1,2,...,k\}} I_j(i) > R_S(C_r+1),$$

Lemma

Let the swap resistance R_S be greater or equal to 4. Then for all sequences of examples, the number of times Algorithm **??** recycles any given node is upper-bounded by the logarithm (with base 2) of the sequence length.

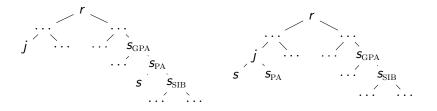


Figure : Illustration of the swapping procedure. Left: before the swap, right: after the swap.

Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000000000000000000	Empirical verification	Summary		
Performance on real datasets						
Experime	ents					

Table :	Training t	ime on	selected	problems.

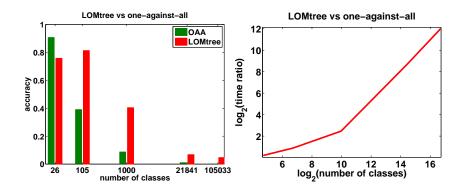
	Isolet	Sector	Aloi
LOMtree	16.27s	12.77s	51.86s
OAA	19.58s	18.37s	11m2.43s

Table : Per-example test time on all problems.

	Isolet	Sector	Aloi	ImNet	ODP
LOMtree	0.14ms	0.13ms	0.06ms	0.52ms	0.26ms
OAA	0.16 ms	0.24ms	0.33ms	0.21s	1.05s

Table : Test error (%) and confidence interval on all problems.

	LOMtree	Rtree	Filter tree
Isolet (26)	6.36 ±1.71	16.92±2.63	$15.10{\pm}2.51$
Sector (105)	$16.19{\pm}2.33$	15.77±2.30	$17.70{\pm}2.41$
Aloi (1000)	$16.50{\pm}0.70$	83.74±0.70	$80.50 {\pm} 0.75$
ImNet (22K)	90.17±0.05	96.99±0.03	$92.12{\pm}0.04$
ODP (105K)	93.46 ±0.12	93.85±0.12	93.76±0.12



Introduction 0000000000	Theoretical analysis	Algorithm 000000000000000000000	Empirical verification	Summary
Conclusio	ns			

New algorithm:

- Reduction from multi-class to binary classification
- New splitting criterion with desirable properties
- Logarithmic training and testing time

Introduction 0000000000	Theoretical analysis	Algorithm 0000000000000000000000	Empirical verification	Summary

References

Logarithmic Time Online Multiclass prediction, Anna Choromanska, John Langford, NIPS 2015

On the boosting ability of top-down decision tree learning algorithm for multiclass classiffication, A. Choromanska¹, K. Choromanski¹, M. Bojarski, 2015 (submitted)

¹equal contribution

Introduction 0000000000	Theoretical analysis	Algorithm 00000000000000000000000	Empirical verification	Summary
Acknowle	edgments			

We would like to thank Alekh Agarwal, Dean Foster, Robert Schapire and Matus Telgarsky for valuable discussions.
 Introduction
 Theoretical analysis
 Algorithm
 Empirical verification
 Summary

 000000000
 00000000000
 000
 00
 00
 00
 00

Thank you!!!