Large scale greedy feature-selection for multi-target learning

Antti Airola, Tapio Pahikkala et al.

ECML 2015 BigTargets Workshop

Antti Airola, Tapio Pahikkala et al. Large scale greedy feature-selection for multi-target learning

Joint work with many authors

 University of Turku: Antti Airola, Pekka Naula, Tapio Pahikkala, Tapio Salakoski (Multi-target greedy RLS)

同 ト イ ヨ ト イ ヨ ト

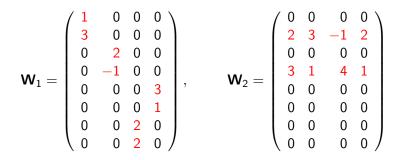
Overview

- Large scale feature selection for multi-target learning
- Task: select minimal set of common features allowing accurate predictions over target tasks
- Greedy RLS: greedy regularized least-squares
- Linear time (#inputs, #features, #outputs, #selected)
- Highlights from experiments
 - Broad-DREAM Gene Essentiality Prediction Challenge
 - Outperforms multi-task Lasso for small feature budgets
- Also scales to full Genome Wide Association Studies; thousands of samples, hundreds of thousands of features (recent PhD thesis: Sebastian Okser)

・ 同 ト ・ ヨ ト ・ ヨ ト

Why feature selection?

- Accuracy: regularizing effect, avoiding overfitting leads to better generalization
- Interpretability: obtain a small set of features understandable by human expert
- Sudget constraints: obtaining features costs time and money



- features × targets coefficient matrices
- W₁ 8 features needed for prediction
- W_2 2 features needed for prediction

Least-squares formulation

$$\begin{aligned} \arg\min_{\mathbf{W}\in\mathbb{R}^{d\times t}} \|\mathbf{X}\mathbf{W}-\mathbf{Y}\|_{F}^{2} \\ \text{subject to } \mathcal{C}(\mathbf{W}) \end{aligned}$$

Notatior	1
х	data matrix
Y	output matrix
W	model coefficients
$\ \cdot\ _F$	Frobenius norm
$C(\cdot)$	Constraint (regularizer)

- 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

э

Multi-task Lasso (Zhang, 2006)

$$\begin{array}{l} \arg\min_{\mathbf{W}\in\mathbb{R}^{d\times t}}\|\mathbf{X}\mathbf{W}-\mathbf{Y}\|_{F}^{2}\\ \text{subject to } \sum_{i=1}^{d}\max_{j}|\mathbf{W}_{i,j}|\leq r \end{array}$$

- $L_{1,\infty}$ norm enforces sparsity in the number of features
- r > 0 regularization parameter

/□ ▶ < 글 ▶ < 글

Greedy RLS (proposed)

$$\begin{aligned} \arg\min_{\mathbf{W}\in\mathbb{R}^{d\times t}} \|\mathbf{X}\mathbf{W}-\mathbf{Y}\|_{F}^{2} \\ \text{subject to } \|\mathbf{W}\|_{F}^{2} < r \quad \text{and} \\ |\{i \mid \exists j, \mathbf{W}_{i,j} \neq 0\}| \le k \end{aligned}$$

- r > 0 regularization parameter
- k > 0 constraint on the number of features
- heuristics needed to search over the power set of features

- Greedy regularized least-squares (Greedy RLS)
- Starting from empty feature set, at each point add the feature reducing leave-one-out cross-validation error most
- Stop once k features have been selected

同 ト イ ヨ ト イ ヨ ト

Greedy RLS

Algorithm 1 Multi-target greedy RLS					
1: $\mathcal{S} \leftarrow \emptyset$	\triangleright selected features common for all tasks				
2: while $ \mathcal{S} < k$ do	\triangleright select k features				
3: $e \leftarrow \infty$					
4: $b \leftarrow 0$					
5: for $i \in \{1,, d\}$	$\setminus S$ do \triangleright test all features				
6: $e_{avg} \leftarrow 0$					
7: for $j \in \{1,,$	<i>t</i> } do				
8: $e_{i,j} \leftarrow \mathcal{L}(\mathbf{X})$	$(\mathcal{S} \cup \{i\}, \mathbf{Y}_{:,j})$ \triangleright LOO for task j				
9: $e_{avg} \leftarrow e_{avg}$	$r_{j} + e_{i,j}/t$				
10: if $e_{avg} < e$ the	'n				
11: $e \leftarrow e_{avg}$					
12: $b \leftarrow i$					
13: $\mathcal{S} \leftarrow \mathcal{S} \cup \{b\}$	\triangleright feature with lowest LOO-error				
14: $\mathbf{W} \leftarrow \mathcal{A}(\mathbf{X}_{:,\mathcal{S}},\mathbf{Y})$	▷ train final models				
15: return W , <i>S</i>					

- Greedy RLS could be implemented as a general wrapper code calling a black-box solver
- #selected × #features × #targets × #CV-rounds calls for naive implementation!
- Matrix algebraic optimization for feature addition, leave-one-out... (for all targets simultaneously)
- Linear time algorithm (#inputs, #features, #outputs, #selected)
- P. Naula, A. Airola, T. Salakoski and T. Pahikkala. Multi-label learning under feature extraction budgets. *Pattern Recognition Letters*, 2014.

Greedy RLS

Algorithm 2 Multi-target greedy RLS

 $\mathbf{A} \leftarrow \lambda^{-1} \mathbf{Y}$ $\mathbf{g} \leftarrow \lambda^{-1} \mathbf{1}$ $\mathbf{C} \leftarrow \lambda^{-1} \mathbf{X}$ $\mathcal{S} \leftarrow \emptyset$ while |S| < k do $e \leftarrow \infty$ $b \leftarrow 0$ for $i \in \{1, \ldots, d\} \setminus S$ do $\mathbf{u} \leftarrow \mathbf{C}_{:,i} (1 + (\mathbf{X}_{:,i})^{\mathsf{T}} \mathbf{C}_{:,i})^{-1}$ $e_i \leftarrow 0$ $\widetilde{\mathbf{A}} \leftarrow \mathbf{A} - \mathbf{u}((\mathbf{X}_{\cdot i})^{\mathsf{T}}\mathbf{A})$ for $h \in \{1, ..., t\}$ do for $i \in \{1, ..., n\}$ do $\tilde{\mathbf{g}}_i \leftarrow \mathbf{g}_i - \mathbf{u}_i \mathbf{C}_{i,i}$ $e_i \leftarrow e_i + (\tilde{\mathbf{g}}_i)^{-2} (\widetilde{\mathbf{A}}_{i,h})^2$ if $e_i < e$ then $e \leftarrow e_i$ $b \leftarrow i$ $\mathbf{u} \leftarrow \mathbf{C}_{:,b}(1 + (\mathbf{X}_{:,b})^{\mathsf{T}}\mathbf{C}_{:,b})^{-1}$ $\mathbf{A} \leftarrow \mathbf{A} - \mathbf{u}((\mathbf{X}_{b})^{\mathsf{T}}\mathbf{A})$ for $i \in \{1, ..., n\}$ do $\mathbf{g}_i \leftarrow \mathbf{g}_i - \mathbf{u}_i \mathbf{C}_{i,b}$ $\mathbf{C} \leftarrow \mathbf{C} - \mathbf{u}((\mathbf{X}_{:,b})^{\mathsf{T}}\mathbf{C})$ $\mathcal{S} \leftarrow \mathcal{S} \cup \{b\}$ $\mathbf{W} \leftarrow (\mathbf{X}_{:,\mathcal{S}})^{\mathsf{T}} \mathbf{A}$

- 4 同 6 4 日 6 4 日 6

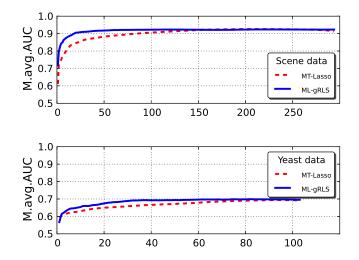
-

Table: Mulan datasets (Tsoumakas et al. 2011).

Data sets	domain	labels	features	instances
Scene	image	6	294	2407
Yeast	biology	14	103	2417
Emotions	music	6	72	593
Mediamill*	text	9	120	41583
Delicious	text	983	500	16105
Tmc2007	text	22	49060	28596

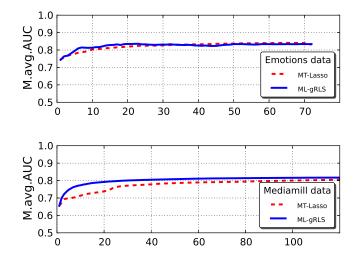
Image: Image:

Greedy RLS vs. Lasso



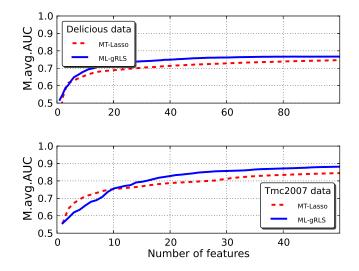
Antti Airola, Tapio Pahikkala et al. Large scale greedy feature-selection for multi-target learning

Greedy RLS vs. Lasso



Antti Airola, Tapio Pahikkala et al. Large scale greedy feature-selection for multi-target learning

Greedy RLS vs. Lasso



- Greedy RLS: linear time algorithm for (multi-target) feature selection
- Selects joint features for the target tasks
- Competitive, when number of features to be selected small
- Applications on Genome-Wide Association Studies
- RLScore open source implementation at https://github.com/aatapa/RLScore