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Joint work with many authors

@ University of Turku: Antti Airola, Pekka Naula, Tapio
Pahikkala, Tapio Salakoski (Multi-target greedy RLS)
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o Large scale feature selection for multi-target learning

o Task: select minimal set of common features allowing
accurate predictions over target tasks

o Greedy RLS: greedy regularized least-squares

o Linear time (#inputs, #features, #outputs, #selected)

@ Highlights from experiments
o Broad-DREAM Gene Essentiality Prediction Challenge
o Outperforms multi-task Lasso for small feature budgets
@ Also scales to full Genome Wide Association Studies;
thousands of samples, hundreds of thousands of features
(recent PhD thesis: Sebastian Okser)
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Why feature selection?

@ Accuracy: regularizing effect, avoiding overfitting leads to
better generalization

@ Interpretability: obtain a small set of features understandable
by human expert

© Budget constraints: obtaining features costs time and money
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Model sparsity
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o features x targets coefficient matrices
@ W; 8 features needed for prediction

o W, 2 features needed for prediction
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Least-squares formulation

arg miny croxe | XW — Y2
subject to C(W)

X data matrix
Y output matrix
w model coefficients

| -llF Frobenius norm
C(-)  Constraint (regularizer)
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Multi-task Lasso (baseline)

Multi-task Lasso (Zhang, 2006)

arg miny croxe | XW — Y||2
subject to Z:-j:l max; Wi ;| < r

@ L; o norm enforces sparsity in the number of features

@ r > 0 regularization parameter
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Greedy RLS

Greedy RLS (proposed)

arg miny croxe [|[XW — Y||2
subject to [|W/||2 < r and
{713, Wij # 0} < k

@ r > 0 regularization parameter
@ k > 0 constraint on the number of features

@ heuristics needed to search over the power set of features
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Greedy RLS

o Greedy regularized least-squares (Greedy RLS)

@ Starting from empty feature set, at each point add the feature
reducing leave-one-out cross-validation error most

@ Stop once k features have been selected
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Greedy RLS

Algorithm 1 Multi-target greedy RLS

LS+ 0 > selected features common for all tasks
2: while |S| < k do > select k features
3: € < 00

4: b« 0

5: foric{l,...,d}\ S do > test all features
6: €avg 0

7: for je{1,...,t} do

8: €jj < [’(X:,Su{i}a Y;,j) > LOO for task j
9: €avg < €ag + e,-J/t
10: if e,z < e then
11: € < €ayg
12: b i
13: S+ SuU{b} > feature with lowest LOO-error
14: W+ A(X.s,Y) > train final models
15: return W, S
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@ Greedy RLS could be implemented as a general wrapper code
calling a black-box solver

o #selected x #£features x #targets x #CV-rounds calls for naive
implementation!

@ Matrix algebraic optimization for feature addition,
leave-one-out... (for all targets simultaneously)

@ Linear time algorithm (#inputs, #features, #outputs,
#selected)

@ P. Naula, A. Airola, T. Salakoski and T. Pahikkala.

Multi-label learning under feature extraction budgets. Pattern
Recognition Letters, 2014.
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Greedy RLS

Algorithm 2 Multi-target greedy RLS
A+ ALY
g+ A1
C+ 21X
S0
while |S| < k do
€ < 00
b<+0
foric{1,...,d}\S do
ueC (l+(X,)TC)™?
€ < 0
A A—u((X.,)TA)
for he {1,...,t} do
for je{l,..., n} do

g g —uC
e < e+ (&) 2(Ajn)?
if ¢ < e then
e e
b+
u e Cop(1+(Xp)TCp) "
A<~ A—u((X.)TA)
forje{l,..., n} do
g < g —uCj,
C+ C—u((X.5)TC)
S« Su{b}
W« (X.5)TA
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Benchmarking greedy RLS and multi-task Lasso

Table: Mulan datasets (Tsoumakas et al. 2011).

Data sets domain | labels | features | instances
Scene image 6 294 2407
Yeast biology | 14 103 2417
Emotions music 6 72 593
Mediamill* | text 9 120 41583
Delicious text 983 500 16105
Tmc2007 text 22 49060 28596
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Greedy RLS vs. Lasso
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Greedy RLS vs. Lasso
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Greedy RLS vs. Lasso
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Conclusion

Greedy RLS: linear time algorithm for (multi-target) feature
selection

Selects joint features for the target tasks
Competitive, when number of features to be selected small

Applications on Genome-Wide Association Studies

RLScore open source implementation at
https://github.com/aatapa/RLScore

Antti Airola, Tapio Pahikkala et al. Large scale greedy feature-selection for multi-target learning


https://github.com/aatapa/RLScore

