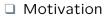
Multi-class to Binary reduction of Large-scale classification Problems

Bikash Joshi

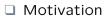
Joint work with Massih-Reza Amini, Ioannis Partalas, Liva Ralaivola, Nicolas Usunier and Eric Gaussier

BigTargets ECML 2015 workshop September the 11th, 2015



□ Learning objective and reduction strategy

- Experimental results
- Conclusion



□ Learning objective and reduction strategy

Experimental results

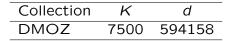
Multiclass classification : emerging problems

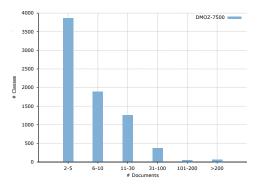
The number of classes, K, in new emerging multiclass problems, for example in text and image classification, may reach 10^5 to 10^6 categories.

 $\hfill 5 \times 10^\circ$ sites

- □ 10⁶ categories
- \Box 10⁵ editors
- imbalanced nature of hierarchies
- Arbitrariness in taxonomy creation personal biases

Large-scale classification : power law distribution of classes





Multiclass classification approaches

- □ Uncombined approaches, i.e. MSVM or MLP. The number of parameters, M, is at least $O(K \times d)$.
- Combined approaches based on binary classification :
 - □ One-Vs-one $M \ge O(K^2 \times d)$
 - □ One-Vs-Rest $M \ge O(K \times d)$
- □ For K >> 1 and d >> 1 traditional approaches do not pass the scale.

□ Learning objective and reduction strategy

Experimental results

Learning objective

Large-scale multiclass classification,

- □ Hypothesis : Observations $\mathbf{x}^{y} = (x, y) \in \mathcal{X} \times \mathcal{Y}$ are i.i.d with respect to a distribution \mathcal{D} ,
- □ For a class of $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}\}$, a ranking instanstaneous loss $h \in \mathcal{H}$ over an example $\mathbf{x}^{\mathcal{Y}}$ by :

$$e(h, \mathbf{x}^{y}) = \frac{1}{K-1} \sum_{y' \in \mathcal{Y} \setminus \{y\}} \mathbb{1}_{h(\mathbf{x}^{y}) \leq h(\mathbf{x}^{y'})},$$

□ The aim is to find a function $h \in H$ that minimizes the generalization error L(h) :

$$L(h) = \mathbb{E}_{\mathbf{x}^{y} \sim \mathcal{D}}\left[e(h, \mathbf{x}^{y})\right].$$

□ Empirical error of a function $h \in \mathcal{H}$ over a training set $S = (\mathbf{x}_{i}^{y_{i}})_{i=1}^{m}$ is

$$\hat{L}_m(h, S) = \frac{1}{m} \sum_{i=1}^m e(h, \mathbf{x}_i^{\mathbf{y}_i})$$

Reduction strategy

Consider the empirical loss

$$\hat{L}_{m}(h, S) = \frac{1}{m(K-1)} \sum_{i=1}^{m} \sum_{y' \in \mathcal{Y} \setminus \{y_{i}\}} \mathbb{1}_{h(\mathbf{x}_{i}^{y_{i}}) \leq h(\mathbf{x}_{i}^{y'})}$$
$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\tilde{y}_{i}g(\mathbf{z}_{i}) \leq \mathbf{0}}}_{L_{n}^{T}(g, \mathcal{T}(S))}$$

where n = m(K - 1), Z_i is a pair of couples costituted by a couple of example and its class and the couple corresponding to the example and another class, $\tilde{y}_i = 1$ if the first couple in Z_i is the true couple and -1 otherwise, and $g(\mathbf{x}^y, \mathbf{x}^{y'}) = h(\mathbf{x}^y) - h(\mathbf{x}^{y'})$.

8/21

Reduction strategy for the class of linear functions

Input: Labeled training set $S = (\mathbf{x}_i^{y_i})_{i=1}^m$; A binary classifier A; Initialize $T(S) \leftarrow \emptyset;$ for i = 1..m do for k = 1..K do if $y_i > k$ then $T(S) \leftarrow \{ (\Phi(\mathbf{x}_i^{y_i}) - \Phi(\mathbf{x}_i^k), +1) \}$ end if $y_i < k$ then $T(S) \leftarrow \{(\varPhi(\mathbf{x}_i^k) - \varPhi(\mathbf{x}_i^{y_i}), -1)\}$ end end end Learn \mathcal{A} on T(S)

9/21

Reduction strategy for the class of linear functions

Input: Labeled training set $S = (\mathbf{x}_i^{y_i})_{i=1}^m$; A binary classifier \mathcal{A} ; Initialize $T(S) \leftarrow \emptyset;$ for i = 1..m do for k = 1..K do if $y_i > k$ then $T(S) \leftarrow \{(\Phi(\mathbf{x}_i^{y_i}) - \Phi(\mathbf{x}_i^k), +1)\}$ end if $y_i < k$ then $T(S) \leftarrow \{(\Phi(\mathbf{x}_i^k) - \Phi(\mathbf{x}_i^{y_i}), -1)\}$ end end end Learn \mathcal{A} on T(S)

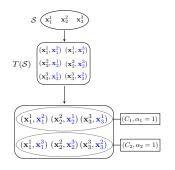
Problems :

 \Box How to define $\Phi(\mathbf{x}^{y})$,

□ Consistency of the ERM principle with interdependant data.

Consistency of the ERM principle with interdependent data

- Different statistical tools for extending concentration inequalities to the case of interdependent data,
- □ tools based on colorable graphs proposed by (Janson, $2004)^{1}$.



^{1.} S. Janson. Large deviations for sums of partly dependent random variables. Random Structures and Algorithms, 24(3) :234–248, 2004.

11/21

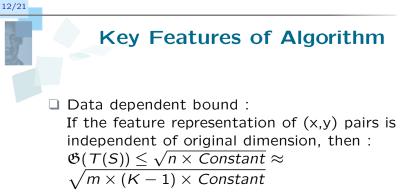
Theorem

Let $S = (\mathbf{x}_{i}^{\mathcal{Y}_{i}})_{i=1}^{m} \in (\mathcal{X} \times \mathcal{Y})^{m}$ be a training set constituted of m examples generated i.i.d. with respect to a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$ and $\mathcal{T}(S) = ((\mathbf{Z}_{i}, \tilde{y}_{i}))_{i=1}^{n} \in (\mathcal{Z} \times \{-1, 1\})^{n}$ the transformed set obtained with application \mathcal{T} . Let $\kappa : \mathcal{Z} \to \mathbb{R}$ by a PSD kernel, and $\Phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{H}$ the associated mapping function. For all $1 > \delta > 0$, and all $g_{w} \in \mathcal{G}_{B} = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle \mid ||\mathbf{w}|| \leq B\}$ with probability at least $(1 - \delta)$ over $\mathcal{T}(S)$ we have then :

$$L^{T}(g_{w}) \leq \epsilon_{n}^{T}(g_{w}, T(\mathcal{S})) + \frac{2B\mathfrak{G}(T(\mathcal{S}))}{m\sqrt{K-1}} + 3\sqrt{\frac{\ln(\frac{2}{\delta})}{2m}}$$
(1)

where $\epsilon_n^T(g_w, T(S)) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\tilde{y}_i g_w(\boldsymbol{Z}_i))$ with a surrogate Hinge loss $\mathcal{L} : t \mapsto \min(1, \max(1-t, 0)), \ \mathcal{L}^T(g_w) = \mathbb{E}_{T(S)}[\mathcal{L}_n^T(g_w, T(S))]$ et $\mathfrak{G}(T(S)) = \sqrt{\sum_{i=1}^n d_\kappa(\boldsymbol{Z}_i)}$ with

$$d_{\kappa}(\mathbf{x}^{y},\mathbf{x}^{y'}) = \kappa(\mathbf{x}^{y},\mathbf{x}^{y}) + \kappa(\mathbf{x}^{y'},\mathbf{x}^{y'}) - 2\kappa(\mathbf{x}^{y},\mathbf{x}^{y'})$$



- Non-trivial joint feature representation (example-class pair)
- □ Same for any number of class
- □ Same parameter vector for all classes

Motivation

□ Learning objective and reduction strategy

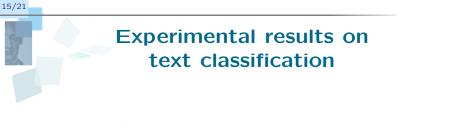
□ Experimental results

Feature representation $\Phi(\mathbf{x}^{\mathcal{Y}})$

Features						
1.	$\sum_{t \in \mathbb{R}^{n}} \ln(1 + y_t)$	2. $\sum_{t \in \mathcal{S}_{t}} \ln(1 + \frac{l_{\mathcal{S}}}{\mathcal{S}_{t}})$				
3.	$\sum_{t\in y\cap x}^{t\in y\cap x} I_t$	4. $\sum_{t \in y \cap x}^{t \in y \cap x} \ln(1 + \frac{y_t}{ y })$				
5.	$\sum_{t\in y\cap x}\ln(1+\frac{y_t}{ y }.I_t)$	6. $\sum_{t \in y \cap x} \ln(1 + \frac{y_t}{ y } \cdot \frac{l_S}{S_t})$				
7.	$\sum_{t \in y \cap x}^{1} 1$	8. $\sum_{t \in y \cap x}^{Y_t} \frac{y_t}{ y } . I_t$				
9.	$d_1(\mathbf{x}^{y})$	10. $d_2(\mathbf{x}^y)$				

- $\square x_t : \text{number of occurrences of terme } t \text{ in } \\ \text{document } x,$
- \Box \mathcal{V} : Number of distinct terms in \mathcal{S} ,

$$y_t = \sum_{x \in \mathcal{Y}} x_t, |y| = \sum_{t \in \mathcal{V}} y_t, \ \mathcal{S}_t = \sum_{x \in \mathcal{S}} x_t, \\ I_{\mathcal{S}} = \sum_{t \in \mathcal{V}} \mathcal{S}_t. \\ I_t : \text{ idf of the terme } t,$$



Collection	K	d	т	Test size			
DMOZ	7500	594158	394756	104263			
WIKIPEDIA	7500	346299	456886	81262			
$\mathcal{K} imes d=O(10^9)$							

Random samples of 100, 500, 1000, 3000, 5000 and 7500 Implementation and comparison :

- SVM with linear kernel as binary classification algorithm
- □ Value of C chosen by cross-validation
- Comparison with OVA, OVO, M-SVM, LogT

Performance Evaluation :

16/21

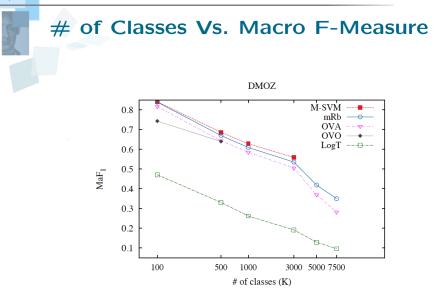
- Accuracy : Correctly classified examples in test dataset
- Macro F-Measure : Harmonic mean of precision and recall

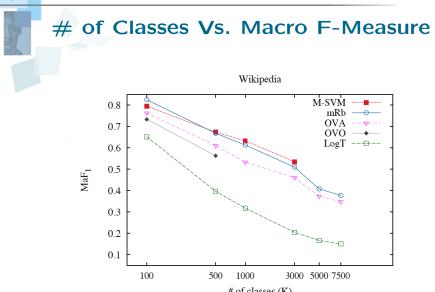
Experimental Results

Result for 7500 class :

	DMOZ-7500		0	Wikipedia-7500
	Acc.	MaF_1	N_c	Acc. MaF ₁ N_c
mRb	.479↓	.352	.495	.437↓ .378 .551
OVA	.549	.282↓	.379	.484 .348↓ .489
LogT	.311↓	.096↓	.194	.231↓ .151↓ .287

- OVO and M-SVM did not pass the scale for 7500 classes
- □ N_c : Proportion of classes for which at leaset one TP document found
- mRb covers 6-9.5% classes than OVA (500 700 classes)





of classes (K)

- A new method of large-scale multiclass classification based on reduction of multiclass classification to binary classification.
- Efficiency of deduced algorithm comparable or better than the state of the art multiclass classification approaches.