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Outline

I Multi-label classification
I Unified probabilistic framework
I Hamming loss vs Subset 0/1 loss

I Factorization of the joint conditional distribution of the labels
I Irreducible label factors
I The ILF-Compo algorithm

I Experimental results
I Toy problem
I Benchmark data sets

This work was recently presented at ICML (Gasse, Aussem, and
Elghazel 2015).
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Unified probabilistic framework

Find a mapping h from a space of features X to a space of labels Y

x ∈ Rd , y ∈ {0, 1}c , h : X→ Y

The risk-minimizing model h? with respect to a loss function L is
defined over p(X,Y) as

h? = arg min
h

EX,Y[L(Y,h(X))]

The point-wise best prediction requires only p(Y | X)

h?(x) = arg min
y

EY|x[L(Y, y)].

The current trend is to exploit label dependence to improve MLC...
under which loss function?
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Hamming loss vs Subset 0/1 loss

Hamming loss Subset 0/1 loss

LH(y,h(x)) = 1/c
c∑

i=1

1(yi 6= hi (x)) LS(y,h(x)) = 1(y 6= h(x))

BR (Binary Relevance) is
optimal, with c parameters

LP (Label Powerset) is
optimal, with 2c parameters

h?H(x) =
c⋃

i=1

arg max
yi

p(yi | x)
h?S(x) = arg max

y
p(y | x)

p(Y | x) much harder to estimate than p(Yi | x)... can we use the
label dependencies to better model p(Y | x) ?
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Hamming loss vs Subset 0/1 loss

A quick example: who is in the picture?

Jean René p(J,R | x)

0 0 0.02
0 1 0.10
1 0 0.13
1 1 0.75

HLoss optimal : J = 1, R = 1 (88%, 85%)
SLoss optimal : J = 1, R = 1 (75%)

Jean René p(J,R | x)

0 0 0.02
0 1 0.46
1 0 0.44
1 1 0.08

HLoss optimal : J = 1, R = 1 (52%, 54%)
SLoss optimal : J = 0, R = 1 (46%)
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Factorization of the joint conditional distribution

Depending on the dependency structure between the labels and the
features, the problem of modeling the joint conditional distribution
may actually be decomposed into a product of label factors

p(Y | X) =
∏

YLF∈PY

p(YLF | X),

arg max
y

p(y | x) =
⋃

YLF∈PY

arg max
y

p(yLF | x),

with PY a partition of Y.

Definition
We say that YLF ⊆ Y is a label factor iff YLF ⊥⊥ Y \ YLF | X.
Additionally, YLF is said irreducible iff none of its non-empty
proper subsets is a label factor.

We seek a factorization into (unique) irreducible label factors ILF.
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Graphical characterization

Theorem
Let G be an undirected graph whose nodes correspond to the
random variables in Y and in which two nodes Yi and Yj are
adjacent iff ∃Z ⊆ Y \ {Yi ,Yj} such that {Yi} 6⊥⊥ {Yj} | X ∪ Z.
Then, two labels Yi and Yj belong to the same irreducible label
factor iff a path exists between Yi and Yj in G.

O(c22c) pairwise tests of conditional independence to characterize
the irreducible label factors.

Much easier if we assume the Composition property.
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The Composition property

The dependency of a whole implies the dependency of some part

X 6⊥⊥ Y ∪W | Z ⇒ X 6⊥⊥ Y | Z ∨ X 6⊥⊥W | Z

Weak assumption: several existing methods and algorithms assume
the Composition property (e.g. forward feature selection).

Typical counter-example

The exclusive OR relationship,

A = B ⊕ C ⇒ {A} 6⊥⊥ {B,C} ∧ {A} ⊥⊥ {B} ∧ {A} ⊥⊥ {C}
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Graphical characterization - assuming Composition

Theorem
Suppose p supports the Composition property. Let G be an
undirected graph whose nodes correspond to the random variables
in Y and in which two nodes Yi and Yj are adjacent iff
{Yi} 6⊥⊥ {Yj} | X. Then, two labels Yi and Yj belong to the same
irreducible label factor iff a path exists between Yi and Yj in G.

O(c2) pairwise tests only. Moreover,

Theorem
Suppose p supports the Composition property and consider Mi an
arbitrary Markov blanket of Yi in X. Then, {Yi} 6⊥⊥ {Yj} | X is
true iff {Yi} 6⊥⊥ {Yj} |Mi .
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ILF-Compo algorithm

Generic procedure

I For each label Yi compute Mi a Markov boundary in X.

I For each pair of labels (Yi ,Yj) check {Yi} 6⊥⊥ {Yj} |Mi to
build G.

I Extract the partition ILF = {YLF1 , . . . ,YLFm} from G.

I Decompose the multi-label problem into a series of
independent multi-class problems.

Experimental setup

I IAMB a constraint-based Markov boundary learning algorithm
(Tsamardinos, Aliferis, and Statnikov 2003);

I Mutual Information-based test of independence (α = 10−3)
(Tsamardinos and Borboudakis 2010);

I Random Forest classifier.
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Experiment on toy problem

X

Y1 Y2 Y3 Y4 Y5

Generic toy DAG (Bayesian network).

We build 5 distinct irreducible factorizations:

I DAG 1: ILF = {{Y1}, {Y2}, {Y3}, {Y4}, {Y5}};
I DAG 2: ILF = {{Y1,Y2}, {Y3,Y4}, {Y5}};
I DAG 3: ILF = {{Y1,Y2,Y3}, {Y4,Y5}};
I DAG 4: ILF = {{Y1,Y2,Y3,Y4}, {Y5}};
I DAG 5: ILF = {{Y1,Y2,Y3,Y4,Y5}}.
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Experiment on toy problem

ILF = {{Y1}, {Y2}, {Y3}, {Y4}, {Y5}}
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Experiment on benchmark data sets

Mean Subset 0/1 loss on the
original benchmark (5x2 CV).

Dataset ILF-Compo LP BR

emotions 64.5 64.3 70.0
image 52.3 52.6 69.5
scene 36.7 36.2 45.9
yeast 73.9 73.6 84.5
slashdot 57.6 54.7 64.5
genbase 3.4 3.8 3.4
medical 34.5 31.1 37.5
enron 84.0 84.5 89.5
bibtex 86.2 78.0 88.4
corel5k 97.1 97.0 99.8

dec−or − slashdot

iamb.sp−mi.pr0.a0.0001 / ci.sp−mi.pr0.a0.0001

Apache

Apple

AskSlashdot BookReviews

BSD

Developers

Entertainment

Games

Hardware

Idle

Interviews

IT

Linux

Main

Meta

Mobile

News

Politics

Science

Search

Technology

YourRightsOnline

Decomposition obtained with
ILF-Compo on slashdot.

Not statistically different from LP.
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Experiment on benchmark data sets - duplicated
We duplicate each data set and permute the rows on the
duplicated variables. By design, the resulting data set contains at
least two irreducible label factors.

Mean Subset 0/1 loss on the
duplicated benchmark (5x2 CV).

Dataset ILF-Compo LP BR

emotions2 89.3 95.2 94.0
image2 79.0 88.0 94.6
scene2 49.7 64.8 78.9
yeast2 94.2 97.7 98.5
slashdot2 81.8 91.1 89.8
genbase2 6.9 30.9 6.7
medical2 72.2 79.4 79.4
enron2 97.5 99.4 99.2
bibtex2 99.5 99.2 99.4
corel5k2 99.9 99.9 99.9

dec−or − slashdot2

iamb.sp−mi.pr0.a0.0001 / ci.sp−mi.pr0.a0.0001

Apache

Apache.1

Apple

Apple.1

AskSlashdot

AskSlashdot.1

BookReviews

BookReviews.1

BSD

BSD.1

Developers

Developers.1

Entertainment

Entertainment.1

Games

Games.1

Hardware

Hardware.1
Idle

Idle.1

Interviews

Interviews.1

IT

IT.1

Linux

Linux.1

Main

Main.1

Meta

Meta.1

Mobile

Mobile.1

NewsNews.1

Politics

Politics.1

Science

Science.1

Search

Search.1

Technology

Technology.1

YourRightsOnline

YourRightsOnline.1

Decomposition obtained with
ILF-Compo on slashdot2.
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Conclusion

I The MLC problem under Subset 0/1 loss was formulated
within a unified probabilistic framework.

I An optimal factorization method was proposed for a subclass
of distributions satisfying the Composition property.

I A straightforward instantiation showed that significant
improvements can be obtained over LP when the conditional
distribution of the labels exhibits several irreducible factors.

Future work

I Relax the Composition property

I Exploit conditional label dependence for other loss functions
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