Multiple Task Learning for Quantitative Structure Activity Relationship Learning: Use of a Natural Metric

Presented by: Noureddin Sadawi

Department of Computer Science Brunel University - London

September 11, 2015

Teams

• University of Manchester

- Prof Ross D. King
- Dr Ivan Olier

• Brunel University - London

- Dr Larisa Soldatova
- Dr Crina Grosan
- Dr Noureddin Sadawi

University of Dundee

- Prof Andrew Hopkins
- Dr Jeremy Besnard
- Dr Richard Bickerton
- Dr Willem van Hoorn

- We wish to use small molecules (Drugs) to modulate the biological activity of proteins (Targets), and thereby treat a disease
- Drugs modulate target activity by specifically binding to the target. Binding to other targets may cause side-effects

- 3 b - 4 3 b

Quantitative Structure-Activity Relationship (QSAR)

- The biological activity of drugs is (largely) dictated by their properties
- \bullet Descriptors \to Mathematical Models \to Analysis and Prediction of Drug Activity
- Uses a set of molecules whose activity in a particular experiment is known
- Given such set, a QSAR model correlates these activities with properties of molecules in the set (regression)
- Used to guide the synthesis of more potent drugs

• • = = • • = =

Quantitative Structure-Activity Relationship (QSAR)

æ

æ

イロト イヨト イヨト イヨト

- A freely available and regularly updated resource for drug discovery data (searchable and downloadable)
- Medicinal Chemistry literature is analysed for drug discovery data
- Information on drug targets and the bioactivities of the compounds on those targets
- Currently has information taken from 57,156 publications on: 10,579 targets, 1,411,786 distinct compounds, and 12,843,338 activities
- ChEMBL provides drug target classification/grouping

伺下 イヨト イヨト

ChEMBL's Classification of Drug Target

- Amino acid sequence of drug targets
- Sequence alignment is used to detect regions of similarity between sequences
- Similar sequences imply that targets are 'homologous' *i.e. evolved from a common ancestor*
- Gives a metric of evolutionary similarity/distance that ranges between zero and one, with zero indicating no similarity and one indicating complete similarity

- A large number of ways to represent molecules have been proposed in chemoinformatics:
 - Bulk properties of the molecules (e.g. LogP Hydrophobicity, pKa acid/base)
 - **Fingerprints:** 100s-1000s of boolean attributes that represent the presence or absence of chemical groups
 - 3-dimensional shapes

• • = • • = •

The Data we have used

- Each dataset represents a drug target (an organism or species)
- We discarded datasets of size less than 10 so we can perform 10 fold cross-validation
- Attributes are 1024-bit fingerprints

MOL_ID	FP_1	FP_2	 FP_n	Activity
ID_1	1	0	 1	6.351
ID_2	0	1	 0	7.534
ID_22	1	1	 1	8.001
ID_23	0	1	 0	6.239

The Problem:

- Many datasets are too small (quality of model)
- It is too costly to obtain labeled data

The Proposed Solution:

- Use existing data from related targets where labeled data is aplenty
- One way is to use multiple task learning
- Exploit task relatedness
- Incorporate natural metric

3.1

Multiple Task Learning

- Learn tasks jointly instead of separately
- Captures relatedness amongst tasks
- Obtain better models

Single Task Learning Task 1 Training Data Training Train

Figure: From SDM 2012 Tutorial by J. Zhou et al

MOL_ID	FP_1	FP_2	 FP_n	Activity
ID_1	1	0	 1	6.351
ID_2	0	1	 0	7.534
ID_22	1	1	 1	8.001
ID_23	0	1	 0	6.239

Table: Typical QSAR Dataset

・ロト ・四ト ・ヨト ・ヨト

æ

Single Task Learning (STL)

- We ran Random Forest (100 trees) on each dataset
- The Features we used are FCFP fingerprints of molecules (1024 Boolean attributes)
- We used 10 fold cross-validation to obtain an estimate of the performance for each model
- We computed Root Mean Squared Error (RMSE) as our performance metric
- We performed all experiments using the WEKA 3.7.11 machine learning package

伺下 イヨト イヨト

- Let us assume we have a drug target group/class with n datasets (each dataset represents a drug target)
- Oncatenate the n datasets into one big dataset
- Add an indicator variable *TID* to each example to indicate Target ID
- Perform stratified 10 fold cross validation using the big dataset
 - Observe: the splits are stratified based on TID
 - We used Random Forest with 100 trees
- Solution Filter predictions using TID
- 6 Compute RMSE

直 ト イヨ ト イヨト

Multiple Task Learning - Setting 1 - Datasets

MOL_ID	TID	FP_1	FP_2	 FP_n	Activity
ID_1	7	1	0	 1	6.351
ID_2	7	0	1	 0	7.534
ID_111	95	1	1	 1	8.001
ID_112	95	0	1	 0	6.239

Table: Dataset for MTL Setting 1

・ 同 ト ・ ヨ ト ・ ヨ ト

2

Multiple Task Learning - Setting 2

- Concatenate the n datasets into one big dataset
- Add an indicator variable *TID* to each example to indicate Target ID
- Add n extra variables to the big dataset: SimToTID_1, SimToTID_2, ..., SimToTID_n
- Fill values of these variables using similarities between targets: sim(TID,TID_1), sim(TID,TID_2) ... etc
- Perform stratified 10 fold cross validation using the big dataset
 - Observe: the splits are stratified based on TID
 - We used Random Forest with 100 trees
- Filter predictions using TID
- O Compute RMSE

• • = • • = •

Multiple Task Learning - Setting 2 - Datasets

MOL_ID	TID	SimToTID_7	SimToTID_95	FP_1	FP₋n	Activity
ID_1	7	1	0.584	1	 1	6.351
ID_2	7	1	0.584	0	 0	7.534
ID_111	95	0.584	 1	1	 1	8.001
ID_112	95	0.584	 1	1	 0	6.239

Table: Dataset for MTL Setting 2

伺 ト イヨ ト イヨ ト

3

Results for L5 Target Classes

Here we count how many targets each algorithms performs better than the other two algorithms

Table: Pair-wise Sign Test for Results for L5 Target Classes

Settings	# +ve	# -ve	# ties
MTL Setting 1 vs STL	782	500	0
MTL Setting 2 vs STL	1081	201	0
MTL Setting 2 vs MTL Setting 1	1043	239	0

<ロト < 同ト < ヨト < ヨト -

æ

TID	RMSE_STL	RMSE_MTL_1	RMSE_MTL_2
10997	0.933 (3)	0.687 (1)	0.697 (2)
101199	0.997 (3)	0.975 (2)	0.841 (1)
101191	0.805 (3)	0.605 (2)	0.556 (1)
10991	0.936 (3)	0.933 (2)	0.855 (1)
10992	0.680 (1)	0.788 (3)	0.709 (2)
101598	0.622 (3)	0.582 (2)	0.556 (1)
12857	0.711 (1)	1.035 (3)	0.847 (2)
101397	0.267 (3)	0.249 (2)	0.234 (1)
AVG RANK	2.453	2.203	1.343

Table: A Simple Rank Test for Results for L5 Target Classes

• • = • • = •

э

Boxplot of RMSE Values

Table: Pair-wise Wilcoxon Signed-ranks Test for Results for L5 Target Classes

Setting	V	p-value	
STL vs MTL Setting 1	186821	1 20 08	
medians: 0.752 & 0.722	400024	1.20-00	
STL vs MTL Setting 2	712070	2.2016	
medians: 0.752 & 0.647	143010	2.2e-10	
MTL Setting 1 vs MTL Setting 2	720764	2 20 16	
medians: 0.722 & 0.647	139104	2.20-10	

Conclusions:

- MTL can improve on standard QSAR learning through use of related targets
- MTL QSAR can be improved by incorporating the evolutionary distance of targets

Discussion:

- Do not stratify based on Target ID
- Use distance between targets instead of similarity (distance = 1 similarity)
- Use distance/similarity between datasets instead of targets

.