ECML 2015 Big Targets Workshop

Paul Mineiro

Extreme Challenges

- How can we generalize well?
- Can we compete with OAA?
- When can we predict quickly?

How can we generalize well?

Chasing Tails

• Typical extreme datasets have many rare classes.

Chasing Tails

- Typical extreme datasets have many rare classes.
- What are the implications for generalization?

Chasing Tails

- Typical extreme datasets have many rare classes.
- What are the implications for generalization?
- Let's use the bootstrap to get intuition.

Bootstrap Lesson

Observation (Tail Frequencies)

The true frequencies of tail classes is not clear given the training set.

Two Loss Patterns

- All classes below have 1 training example.
- Which hypothesis do you like better?

	h_1	<i>h</i> ₂
class 1	1	0.6
class 2	1	0.6
class 3	0	0.42
class 4	0	0.42

Two Loss Patterns

- All classes below have 1 training example.
- Which hypothesis do you like better?

	h_1	<i>h</i> ₂
class 1	1	0.6
class 2	1	0.6
class 3	0	0.42
class 4	0	0.42

- ERM likes h_1 better.
- I like h_2 better.

The Extreme Deficiencies of ERM

• ERM cares only about average loss.

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim D} \left[l(h(x); y)
ight]$$

- ... but extreme learning empirical losses can have high variance.
- ERM doesn't care about empirical loss variance.
- ERM is based upon a uniform bound on the hypothesis space.

eXtreme Risk Minimization

• Sample Variance Penalization (XRM) penalizes combination of expected loss and loss variance.

 $h^* = \operatorname*{argmin}_{h \in \mathcal{H}} \left(\mathbb{E} \left[l(h(x); y) \right] + \kappa \mathbb{V} \left[l(h(x); y) \right] \right)$

- (κ is a hyperparameter in practice)
- XRM is based upon empirical Bernstein bounds.

Example: Neural Language Modeling

• Mini-batch XRM gradient:

$$\mathbb{E}_{i}\left[\left(1+\kappa\frac{l_{i}(\phi)-\mathbb{E}_{j}\left[l_{j}(\phi)\right]}{\sqrt{\mathbb{E}_{j}\left[l_{j}^{2}(\phi)\right]-\mathbb{E}_{j}\left[l_{j}(\phi)\right]^{2}}}\right)\frac{\partial l_{i}(\phi)}{\partial\phi}\right]$$

- \bullet Smaller than average loss \implies lower learning rate
- Larger than average loss \implies larger learning rate
- Loss variance is the unit of loss measurement

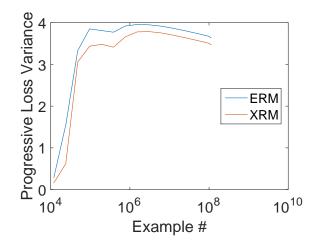
Example: Neural Language Modeling

- enwiki9 data set
- FNN-LM of Zhang et. al.
- Same everything except κ .

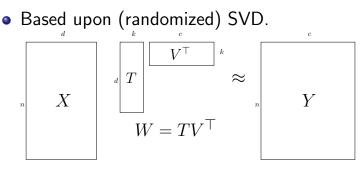
method	perplexity
ERM ($\kappa = 0$)	106.3
XRM ($\kappa = 0.25$)	104.1

• Modest lift, but over SOTA baseline and with minimal code changes.

Example: Neural Language Modeling



Example: Randomized Embeddings



How to adapt black-box technique to XRM?
Idea: proxy model ⇒ importance weights.

Imbalanced binary XRM

- Binary classification with constant predictor.
- $l(y;q) = y \log(q) + (1-y) \log(1-q)$

$$1 + \kappa \frac{l(y;q) - \mathbb{E}\left[l(\cdot;q)\right]}{\sqrt{\mathbb{E}\left[l^{2}(\cdot;q)\right] - \mathbb{E}\left[l(\cdot;q)\right]^{2}}}\Big|_{q=p}$$
$$= \begin{cases} 1 - \kappa \sqrt{\frac{p}{1-p}} & y = 0\\ 1 + \kappa \sqrt{\frac{1-p}{p}} & y = 1 \end{cases} \qquad (p \le 0.5)$$

XRM Rembed for ODP

- Compute base rate q_c each class c.
- Importance weight $(1 + \kappa (1/\sqrt{q_{y_i}}))$.

method	error rate (%)
ODP ERM	[80.3, 80.4]
ODP XRM ($\kappa = 1$)	[78.5, 78.7]

• Modest lift, but over SOTA baseline and with minimal code changes.

Summary

- The tail can deviate wildly between train and test.
- Controlling loss variance helps a little bit.
- Speculation: explicitly treat the head and tail differently?