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Multi-label classification:
the example of document categorization
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Another multi-label classification example:
gene function prediction
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Multivariate regression:
the example of protein-ligand interaction prediction
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Another multivariate regression example:
predicting environmental pollution
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Multi-task learning:
the example of predicting student marks
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A second multi-task learning example:
predicting whether users labeled an image correctly
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Motivation for this tutorial

Over the last two decades, a lot of tailor-made methods that solve
specific multi-target prediction methods have been proposed

There is a need to understand which methods are useful under which
conditions

In addition, there is also a need for generic software tools that can be
employed in a semi-automated way

We believe that deep learning methods have generic building blocks
that can be used for tackling various MTP problems

Key references:

W. Waegeman, K. Dembczynski, E. Hüllermeier. Multi-target prediction: A unifying
view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 2019.

D. Iliadis, B. De Baets and W. Waegeman. Multi-target prediction for dummies with
two-branch neural networks, Machine Learning 2022.
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Overview of this talk

1 Introduction (10 min)

2 A unifying view on MTP problems (20 min)

3 A unifying view on MTP methods (50 min)

4 Coffee break (30 min)

5 Hands-on part (80 min)
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General framework

Definition (Multi-target prediction)

A multi-target prediction setting is characterized by instances x ∈ X and
targets t ∈ T with the following properties:

P1. A training dataset D consists of triplets (xi, tj , yij), where yij ∈ Y
denotes a score that characterizes the relationship between the
instance xi and the target tj .

P2. In total, n different instances and m different targets are observed
during training, with n and m finite numbers. Thus, the scores yij of
the training data can be arranged in an n×m matrix Y , which is in
general incomplete, i.e., Y may have missing values.

P3. The score set Y consists of nominal, ordinal and/or real values.

P4. The goal consists of predicting scores for any instance-target couple
(x, t) ∈ X × T .
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Conventional MTP settings

Side information for targets is normally not available.

Multi-label classification: (e.g., assigning appropriate category tags to
documents).

Multivariate regression: (e.g., predicting whether a protein will bind
to a set of experimentally developed small molecules).

Multi-task learning: (e.g., predicting student marks in the final exam
for a typical high-school course).

Other settings: label ranking, multi-dimensional classification, etc.
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Conventional MTP settings

Definition (Multi-label classification)

A multi-label classification problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m; this implies that all targets are observed
during training.

P6. No side information is available for targets. Again, without loss of
generality, we can hence identify targets with natural numbers, such
that the target space is T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8a. The score set is Y = {0, 1}.
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Conventional MTP settings

Definition (Multivariate regression)

A multivariate regression problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m. This implies that all targets are observed
during training.

P6. No side information is available for targets. Without loss of generality,
we can hence assign the numbers 1 to m as identifiers to targets,
such that the target space is T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8b. The score set is Y = R.
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Conventional MTP settings

Definition (Multi-task learning)

A multi-task learning problem is a specific instantiation of the general
framework, which exhibits the following additional properties:

P5. The cardinality of T is m; this implies that all targets are observed
during training.

P6. No side information is available for targets. Again, the target space
can hence be taken as T = {1, ...,m}.

P7. The score matrix Y has no missing values.

P8c. The score set consists of binary or real values: Y = {0, 1} or Y = R.
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Let’s assume a document hierarchy:
How would you call this machine learning problem?
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Let’s assume a structured representation:
How would you call this machine learning problem?
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Let’s assume a vector representation:
How would you call this machine learning problem?
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Learning with side information on targets

Examples:
▶ Taxonomy on document categories (knowledge of relations between

targets).
▶ Representation for the target molecules in drug design application

(structured representation).
▶ Information about schools and courses (geographical location,

qualifications of the teachers, reputation of the school, etc.) in student
mark forecasting application (vector or feature representation).

Such problems are often referred to as dyadic prediction, pairwise
learning, link prediction, or network inference settings.

However, MTP terminology is rarely used in this literature.

Side information is of crucial importance for generalizing to novel
targets that are unobserved during the training phase.
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Inductive versus transductive MTP problems
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Inductive versus transductive learning problems

Definition (Zero-shot learning)

A zero-shot learning problem is a specific instantiation of the general
framework with the following additional property:

P5*. m < m∗ = |T |. Some targets are hence not observed during training,
but may nevertheless appear at prediction time.

By substituting P5 with P5*, one now tackles problems that are
inductive instead of transductive w.r.t. targets.

The same subdivision can be made for instances.

In total, the four different settings referred to as A, B, C, D can be
distinguished (in the presence of side information).

Theoretically, settings B and C are identical/symmetric, though there
are practical differences/asymmetries.
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A typical application of Setting A: recommender systems
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Inductive versus transductive learning problems

Definition (Matrix completion)

A matrix completion problem is a specific instantiation of the general
framework with the following additional properties:

P5. The cardinality of T is m. This implies that all targets are observed
during training.

P6. No side information is available for targets. Without loss of generality,
we can hence assign identifiers to targets from the set {1, ...,m} such
that the target space is T = {1, ...,m}.

P9. The cardinality of X is n. This implies that all instances are observed
during training.

P10. No side information is available for instances. Without loss of
generality, we can hence assign identifiers to instances from the set
{1, ..., n}, such that the instance space is X = {1, ..., n}.
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What we usually don’t cover under MTP
Multi-class classification

The one-versus-all decomposition of multi-class classification could be
seen as a multi-target prediction problem

Other decompositions (one-versus-one, ECOC, etc.) cannot be
represented using the MTP framework
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What we usually don’t cover under MTP
Structured output prediction

Structured output prediction
considers a mapping of the form
X → T
Could be covered by considering
a target representation tj ∈ T
as an output

Complications arise because the
cardinality of T would be very
large, or even infinite
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What we usually don’t cover under MTP
Learning monadic relations

Settings where in Y the rows
and columns are identical, thus
X = T
Appears in various areas such as
metric learning, similarity
learning, link prediction,
pairwise preference learning, etc.

Complications arise since the
matrix Y would exhibit
additional properties, such as
symmetry, antisymmetry,
reciprocity, etc.
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Overview of this talk

1 Introduction (10 min)

2 A unifying view on MTP problems (20 min)

3 A unifying view on MTP methods (50 min)

4 Coffee break (30 min)

5 Hands-on part (80 min)
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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A baseline method:
learning a model for each target independently
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The results section of a typical MTP paper...

Independent models a.k.a. binary relevance, models that do not exploit
target dependencies, one-versus-all, etc.
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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The basic deep architecture for multi-target prediction

Joint feature learning ϕ(x) among targets12:

fj(xi) = a⊺
jϕθ(xi) pj(xi) = P (yij = 1 | xi) =

exp(−fj(xi))

1 + exp(−fj(x)i)
Typical loss function for regression and classification:

min
a1,...,am,θ

n∑
i=1

m∑
j=1

(yij − fj(xi))
2 min

a1,...,am,θ

n∑
i=1

m∑
j=1

CE(yij , pj(xi))

1 First presented in: Caruana, Multitask learning: A knowledge-based source of inductive bias. Machine Learning 1997
2 Figure from: Zhang et al. Facial landmark detection by deep multi-task learning, ECCV 2014
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Tailor-made architectures, e.g. cross-stitch netowrks

Learn a combination of target-specific and shared representations3:

3 Figure from Misra et al. Cross-stitch networks for multi-task learning, CVPR 2016
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Neural architecture search for multi-task learning 4

4 Gao et al. Task-agnostic neural architecture search towards general-purpose multi-task learning, CVPR 2020
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Regularization terms for multi-target prediction5

Simple assumption: models
for different targets are
related to each other.

Simple solution: the
parameters of these models
should have similar values.

Approach: bias the
parameter vectors towards
their mean vector.

Mean

Target 1

Target 2

Target 3

Target 4

min
a1,...,am,θ

n∑
i=1

m∑
j=1

(yij − fj(xi))
2 + λ

m∑
j=1

||aj −
1

m

m∑
l=1

al||2 ,

5 Evgeniou and Pontil, Regularized multi–task learning, KDD 2004.
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Encoding target relationships in deep architectures67

Usually tailormade architectures for specific applications!

6 Dai et al., Instance-aware Semantic Segmentation via Multi-task Network Cascades, CVPR 2016
7 Xu et al., PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene
Parsing, CVPR 2018

39 / 96



Re-using Pretrained Models in (Deep) Neural Networks

Commonly-used training method: first train on targets that have a lot of
observations, only train some parameters for targets that have few

observations 8

8 Keras Tutorial: Transfer Learning using pre-trained models
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An example from the introduction revisited

41 / 96



Exploiting relations in regularization terms

Graph-based regularization is an approach that can be applied to various
types of relations9:

min
a1,...,am,θ

n∑
i=1

m∑
j=1

(yij − fj(xi))
2 + λ

m∑
j=1

∑
l∈N (j)

||aj − al||2

9 Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013
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What does it mean for targets to be “related”?

We distinguish between conditional and unconditional (in)dependence of
targets10.

Unconditional/marginal dependence:

P (y) ̸=
m∏
j=1

P (yi)

Often due to model similarities, i.e., yij = fj(xi) + ϵij for
j = 1, . . . ,m, with similarities in the structural parts fj(·), which
implies correlation between targets.

Conditional dependence:

P (y |x) ̸=
m∏
j=1

P (yj |x)

10Dembczynski et al., On Label Dependence and Loss Minimization in Multi-Label Classification. Machine Learning, 88, 2012.
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Marginal (in)dependence ̸⇆ conditional (in)dependence

Example:

x1 y1 y2 P x1 y1 y2 P

0 0 0 0.25 1 0 0 0
0 0 1 0 1 0 1 0.25
0 1 0 0 1 1 0 0.25
0 1 1 0.25 1 1 1 0

Strong conditional dependence, for example
P (y1 = 0|x1 = 1)P (y2 = 0|x1 = 1) = 0.5× 0.5 = 0.25 ̸= 0.

Yet, labels are marginally independent: Joint probability is the
product of the marginals P (y1 = 0) = P (y2 = 0) = 0.5.

Domain knowledge w.r.t. marginal dependence is often available

Conversely, domain knowledge w.r.t. conditional dependence is almost
never available, and needs to be learned from data
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Conditional dependence in multi-label classification

For a feature vector x, predict a vector of responses
y = (y1, y2, . . . , ym) using a function/hypothesis h:

x = (x1, x2, . . . , xp)
h(x)−−−−−→ ŷ = (ŷ1, ŷ2, . . . , ŷm)

In multi-label classification, a broad spectrum of multi-label loss
functions

ℓ : {0, 1}m × {0, 1}m → R

is conceivable.

Problem: Given a target loss ℓ, find a (Bayes) predictor h that
minimizes expected loss with regard to ℓ.

h∗(x) = arg min
ŷ∈{0,1}m

∑
y∈{0,1}m

L(y, ŷ)P (y | x)
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Two simple yet extreme multi-label losses

h∗(x) = arg min
ŷ∈{0,1}m

∑
y∈{0,1}m

L(y, ŷ)P (y | x)

Key question: Can we achieve this goal through simple reduction, i.e.,
by training one model for each target independently? Or can we do
better with more sophisticated methods?

The Hamming loss averages over mistakes on individual labels:

ℓH(y, ŷ) =
1

m

m∑
i=1

Jyi ̸= ŷiK

The subset 0/1 loss simply checks for entire correctness:

ℓ0/1(y, ŷ) = Jy ̸= ŷK = max
i

Jyi ̸= ŷiK
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Hamming vs. subset 0/1 loss

The risk minimizer for the Hamming loss is the marginal mode:

h∗i (x) = arg max
yi∈{0,1}

P (yi |x) , i = 1, . . . ,m,

while for the subset 0/1 loss it is the joint mode11:

h∗(x) = argmax
y∈Y

P (y |x) .

Marginal mode vs. joint mode.

y P (y | x)
0 0 0 0 0.30
0 1 1 1 0.17
1 0 1 1 0.18
1 1 0 1 0.17
1 1 1 0 0.18

Marginal mode: 1 1 1 1
Joint mode: 0 0 0 0

11Dembczynski et al. On label dependence and loss minimization in multi-label classification, Machine Learning 2012
48 / 96



Probabilistic classifier chains12

Estimate the joint conditional distribution P (y |x).
For optimizing the subset 0/1 loss:

ℓ0/1(y, ŷ) = Jy ̸= ŷK

Repeatedly apply the product rule of probability:

P (y |x) =
m∏
i=1

P (yi |x, y1, . . . , yi−1) .

Learning relies on constructing probabilistic classifiers for estimating

P (yi |x, y1, . . . , yi−1) ,

independently for each i = 1, . . . ,m.

12Dembczysnki et al. Bayes-optimal multi-label classification with probabilistic classifier chains, ICML 2010.
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Inference relies on exploiting a probability tree13 14:

x

P (y1 = 0 |x) = 0.4

P (y2=0 | y1=0,x)=0.0

P (y=(0, 0) |x)=0

y2 = 0

P (y2=1 | y1=0,x)=1.0

P (y=(0, 1) |x)=0.4

y2 = 1

y1 = 0

P (y1 = 1 |x) = 0.6

P (y2=0 | y1=1,x)=0.4

P (y=(1, 0) |x)=0.24

y2 = 0

P (y2=1 | y1=1,x)=0.6

P (y=(1, 1) |x)=0.36

y2 = 1

y1 = 1

(0, 1) is the joint mode and the minimizer of the subset zero-one loss

Can be found with specific inference algorithms

(1, 1) is the minimizer of the Hamming loss

Compute the minimizer on a sample from P (y |x)
13Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012
14Mena et al. A family of admissible heuristics for A* to perform inference in probabilistic classifier chains, Machine Learning
2017.
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Deep learning methods that estimate P (y | x)

Use PCC with a neural network as base learner

Use a recurrent neural network to reduce the length of the chain in
PCC by only predicting positive labels15

Alternative methods to estimate P (y | x), e.g. conditional random
fields and their deep extensions16

Instead of estimating P (y | x), consider energy-based models17:

h(x) = arg min
y∈{0,1}m

E(y,x)

For certain loss functions, such as the instance-wise F-measure, it
suffices to estimate specific properties of P (y | x) 18 19

15Nam et al. Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification, Neurips 2017
16Zheng et al. Conditional Random Fields as Recurrent Neural Networks, ICCV2015
17Bellanger and MacCallum, Structured Prediction Energy Networks, ICML 2016
18Waegeman et al. On the Bayes-optimality of F-measure maximizers, JMLR 2014
19Decubber et al., Deep F-measure maximization in multi-label classification:a comparative study, ECML/PKDD 2018.
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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An example revisited
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Another example revisited
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Target representations can take many forms
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Traditional approach: Kronecker kernel ridge regression

Tensor product model representation in the primal formulation:

f(x, t) = wT (ϕ(x)⊗ ψ(t))

Kronecker product pairwise kernel in the dual formulation20:

f(x, t) =
∑

(x̄,t̄)∈D

α(x̄,t̄)k(x, x̄) · g(t, t̄) =
∑

(x̄,t̄)∈D

α(x̄,t̄)Γ((x, t), (x̄, t̄))

20Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018
Figure taken from https://www.math3ma.com/blog/the-tensor-product-demystified
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Pairwise model representations in neural networks21

21 Lee et al. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences, PLOS
Computational Biology, 2018.

57 / 96



Pairwise model representations in neural networks22

22Huang et al. DeepPurpose: a deep learning library for drug–target interaction prediction, Bioinformatics 2020.
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Pairwise model representations in neural networks23

23Xin et al. ATNN: Adversarial Two-Tower Neural Network for New Item’s Popularity Prediction in E-commerce.
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Differences between direct sum and tensor product

In kernel methods, the tensor product is needed to guarantee
universality24

In neural networks, the direct sum can mimic the tensor product when
an MLP is used to learn interactions

However, this comes at the cost of more model parameters, so more
training data is needed

24Waegeman et al. A kernel-based framework to learn graded relations from data, IEEE Transactions on Fyzzy Systems, 2012.
Picture taken from https://www.math3ma.com/blog/the-tensor-product-demystified
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Pairwise model representations in neural networks25

25Yang et al. Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations, WWW 2020.
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Pairwise model representations in neural networks26

26Yi et al. Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations, RecSys 2019.
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Differences between direct sum and dot product

Compared to the direct sum plus MLP, the dot product looks much
more restrictive because it has less parameters

The direct sum allows for different dimensions for instance and target
embeddings

In the area of recommender systems, the two methods give
comparable empirical results27

27Rendle et al., Neural Collaborative Filtering vs. Matrix Factorization Revisited, RecSys 2020.
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A unifying view on MTP methods

Group of methods Applicable setting

Independent models B
Similarity-enforcing methods B
Relation-exploiting methods B and D
Relation-constructing methods B
Representation-exploiting methods B and D
Representation-constructing methods A and B
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Setting A:
Matrix completion without or with

side information

Setting B:
Side information for instances is

required
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Setting A (Matrix completion without side information)

Traditional approach: Factorize the matrix Y into two smaller matrices28:

Y = U × V

28See e.g. Jain et al., Low-rank matrix completion using alternating minimization, ACM Symposium on Theory of Computing
2013
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Setting A (Matrix completion with side information)

Construct implicit features (xI , tI) for users and items with matrix
factorization methods

Exploit explicit features (xE , tE) (a.k.a. side information)

Concatenate:

xC = xI ⊕ xE , tC = (tI ⊕ tE)

Apply methods that we have seen before2930:

f(xC , tC) = wT
(
ϕ(xC)⊗ ψ(tC)

)
29Menon and Elkan, A log-linear model with latent features for dyadic prediction, ICDM 2010
30Volkovs and Zemel, Collaborative filtering with 17 parameters, NIPS 2012
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Matrix completion with neural networks31

31He et al., Neural collaborative filtering, WWW 2017
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When is it useful to construct target representations?

Theorem: Singular Value Decomposition

Any n×m matrix Y can be decomposed as follows:

σ1, σ2, ...: singular values of Y

r = Rank of Y = number of non-zero singular values

High rank when a lot of singular values differ from zero

Low rank when a lot of singular values are zero

Singular values give insight in what can be gained
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Low-dimensional target representations in Setting B

As before, consider a linear model for every target:

fj(xi) = a⊺
jxi

Can be written as a linear transformation:

f(x) = Ax with A =

a
T
1
...

aT
m


Consider a low-rank approximation of the parameter matrix32:

min
a1,...,am

n∑
i=1

m∑
j=1

(yij − fj(xi))
2 + λ rank(A)

32Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009. 70 / 96



Low-dimensional target representations in Setting B
A: parameter matrix of dimensionality m× p

p: the number of features

m: the number of targets

Assume a low-rank structure of A:

U × V = A

(m× r) (r × p) (m× p)

r is the rank of A

We can write A = V U and Ax = V Ux
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Applying this principle to neural networks

...

...
...

x(1)

x(2)

x(3)

x(100 000)

y1

y2

y3

y4

y670,000

Input
layer

Embedding
layer

Output
layer

Mapping input to output via bottleneck layer

Nonlinear alternative to Ax = V Ux33

33Wicker et al., A nonlinear label compression and transformation method for multi-label classification using autoencoders,
PAKDD 2016
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Conclusions
Multi-target prediction is an active field of research that connects
different types of machine learning problems

In the corresponding subfields of machine learning, problems have
typically been solved in isolation, without establishing connections
between methods

When analyzing MTP methods, it is important to understand several
concepts, such as the influence of loss functions, and the availability
and absence of side information

Further reading:
W. Waegeman, K. Dembczynski, E. Hüllermeier. Multi-target prediction:
A unifying view on problems and methods. Data Mining and Knowledge

Discovery, 33(2), 2019.
https://arxiv.org/abs/1809.02352

D. Iliadis, B. De Baets, W. Waegeman, Multi-target prediction for
dummies using two-branch neural networks, Machine Learning, to appear.

https://arxiv.org/abs/2104.09967
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Overview of this talk

1 Introduction (10 min)

2 A unifying view on MTP problems (20 min)

3 A unifying view on MTP methods (50 min)

4 Coffee break (30 min)

5 Hands-on part (80 min)
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Setting selection in Multi-Target Prediction

user

dataset

Multi-label classification?

Hierarchical Multi-label classification?

Multivariate regression?

Multi-task learning?

Dyadic prediction?

Zero-shot learning?

Matrix completion?

Hybrid Matrix completion?

+
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Multi-target prediction for dummies using two-branch
neural networks (DeepMTP)

DeepMTP, first step towards a framework that performs setting selection
and trains a model in an end-to-end approach.

1. An MTP setting selection step that is based on a custom-made
questionnaire.

2. A flexible neural network architecture that can be used for the several
subfields of MTP.
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Purpose-made questionnaire

Q1: Is it expected to encounter novel instances during testing? (yes/no)

Q2: Is it expected to encounter novel targets during testing? (yes/no)

Q3: Is there side information available for the instances? (yes/no)

Q4: Is there side information available for the targets? (yes/no)

Q5: Is the score matrix fully observed? (yes/no)

Q6: What is the type of the target variable?
(binary/nominal/ordinal/real-valued)
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Multi-label classification (document categorization)

Tennis Football Biking Movies TV Belgium

0 1 0 0 1 1

1 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 1 0

1 0 0 1 0 0

? ? ? ? ? ?

Text_1

Text_2

Text_3

Text_4

Text_5

Text_6

01101

00111

01110

10001

01011

11110

Q1: yes

Q2: no

Q3: yes

Q4: no

Q5: yes

Q6: binary
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Multivariate regression (protein-ligand interaction
prediction)

Mol1 Mol2 Mol3 Mol4 Mol5 Mol6

1.3 0.2 1.4 1.7 3.5 1.3

2 1.7 1.5 7.5 8.2 7.6

0.2 0 0.3 0.4 1.2 2.2

3.1 1.1 1.3 1.1 1.7 5.2

? ? ? ? ? ?

 

   

 

   

 

  

 

 

  
 

 
 

 

 

 

  
 

  
 

  
   

 

 
 
 

 

 
 

 
 

 
 

 

 
 
 

 
  

 
  

 

 

  

 

   

   

 

 
 

 
 

 
 

 
 

 
 
 

 
  

 
 
 

Q1: yes

Q2: no

Q3: yes

Q4: no

Q5: yes

Q6: real-valued
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Multi-task Learning (crowd-sourced annotation)

1 0 0 1

0 1 0 0 1

0 1 1 1 1 0

1 0 1 1

? ? ? ? ? ? ?

2

1 2 3 4 5 6 7

Q1: yes

Q2: no

Q3: yes

Q4: no

Q5: no

Q6: binary/
real-valued
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Dyadic prediction (protein-ligand interaction prediction)

1.3 0.2 0.9 1.9 3.1
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Q1: yes

Q2: no

Q3: yes

Q4: yes

Q5: no

Q6: binary/
real-valued
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Matrix Completion (Content recommendation)

8 5 ? 10 ?

4 ? 8 ? 3

? 7 2 ? 5

1 ? ? 7 ?

5 ? 5 ? ?

1

1 2 3 4 5

2

3

4

5

Q1: no

Q2: no

Q3: no

Q4: no

Q5: no

Q6: binary/
real-valued
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Setting selection in Multi-Target Prediction

Q1 Q2 Q3 Q4 Q5 Q6 MTP method
yes no yes no yes binary Multi-label classification
yes no yes no yes real-valued Multivariate regression
yes no yes no no - Multi-task learning
yes no yes yes (hierarchy) yes binary Hierarchical Multi-label classification
yes no yes yes no - Dyadic prediction
yes yes yes yes no - Zero-shot learning
no no no no no - Matrix completion
no no yes yes no - Hybrid Matrix completion
yes yes yes yes no - Cold-start Collaborative filtering
yes no yes no yes nominal/categorical Multi-dimensional classification

These questions generate 128 different combinations

Most of them lead to impossible tasks

Simple rule: generalization to novel instances or targets necessitates
the corresponding side information.
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A flexible neural network architecture

Popularized by the neural collaborative filtering (NCF)34 method in the
field of recommender systems

𝒑 ∈ ℝ𝑔 𝒒 ∈ ℝ𝑘

MLP

𝒑 ∈ ℝ𝑔 𝒒 ∈ ℝ𝑘

MLP

𝒓 ∈ ℝ𝑤

The multi-branch architecture has two versions:

1. The dual-branch architecture has to input branches (instances and
targets).

2. The tri-branch architecture adds a third input for any available
dynamic side information.

34He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering.In: Proceedings of the 26th International
Conference on World Wide Web, pp. 173–182(2017)
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Matrix completion with Dyadic features

8 5 ? 10 ?

4 ? 8 ? 3

? 7 2 ? 5

1 ? ? 7 ?

5 ? 5 ? ?

1

1 2 3 4 5

2

3

4

5
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Combining embedding vectors

𝒑 ∈ ℝ𝑔 𝒒 ∈ ℝ𝑘

MLP

𝒙 ∈ 𝑋 𝒕 ∈ 𝑇

𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘

𝒙 ∈ 𝑋 𝒕 ∈ 𝑇

Dot 

product
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A flexible neural network architecture 2
Depending on the availability of side information:

1. If side information is available: use it...
2. If side information is missing: create one-hot encoded vectors.

plane Person Dog Bus Cat

1 0 0 0 0

0 0 1 0 1

0 1 1 0 0

1 1 0 1 0

? ? ? ? ?

2

Instance branch Target branch

0, 0, 0, 0, 1
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A flexible neural network architecture 3

Depending on the type of side information

1. tabular data: fully connected layers.

2. images: convolutional neural network.

3. time-series: RNNs, LSTMs..

𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘 𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘

• age
• gender
• height
• …

Dot 

product

Dot 

product
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A flexible neural network architecture 4

Depending on the type of target variable:

1. if the target variable is binary: use BCE

min
a1,...,am,θ

n∑
i=1

m∑
j=1

CE(yij , pj(xi)) (1)

2. if the target variable is real-valued: use MSE

min
a1,...,am,θ

n∑
i=1

m∑
j=1

(yij − fj(xi))
2 (2)
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A closer look

𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘

plane person dog bus cat

1 0 0 0 0

0 0 1 0 1

0 1 1 0 0

1 0 0 1 0

img_1

1 0 0 0 0

plane

Input layer

Embedding layer

Output layer ො𝑦𝑥𝑡 𝑦 = 1

img_2

img_3

img_4

img_1

BCE
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A closer look (Dyadic Prediction)

1 0 0 1 1 1 ?

1 1 0 0 0 1 ?

0 0 1 0 1 0 ?

0 1 1 0 0 1 ?

1 0 0 1 0 0 ?

? ? ? ? ? ? ?

 

   

 

   

 

  

  

 

   
 

  

 

 
  

 

 
 
 

 

 
 

 

 

 
 
 

 
 
 

 

 
  

 

  

  
  

  

   
   

   

 

 
 
 

 

  

 
 

 
 

 

 
 
 

 
 
 

 
 
 

 

 

  

 

   

   

 

𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘

1 1 0 0 1Input layer

Embedding layer

Output layer
ො𝑦𝑥𝑡 𝑦 = 1

BCE

1 0 0 1 1 0 0
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A closer look (Matrix Completion)

𝒑 ∈ ℝ𝑘 𝒒 ∈ ℝ𝑘

1 0 0 0 0Input layer

Embedding layer

Output layer
ො𝑦𝑥𝑡 𝑦 = 10

RMSE

8 5 ? 10 ?

4 ? 8 ? 3

9 7 2 ? 5

? ? 1 8 ?

10 ? ? 7 ?

6 ? 7 ? ?

1

3

1 2 3 4 5

2

3

4

5

6

5 1

0 0 0 0 1 0
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Validating the framework

To investigate the effectiveness of the proposed architecture we
experimented with multiple datasets from various MTP problem settings 35

Multi-label classification
▶ Yeast
▶ Scene
▶ Bibtex
▶ Corel5k

Multivariate regression
▶ Enb
▶ Jura
▶ Water quality
▶ Oes97
▶ Oes10
▶ Puma8NH
▶ Puma32H

Hamming loss BR(SVM) MLP DeepMTP
Yeast 0.1935 0.2406 0.2309
Bibtex 0.0130 0.0198 0.0157

aRRMSE SVR/target MLP DeepMTP
Enb 0.1161 0.0933 0.0954
Oes97 0.5394 0.7885 0.4843

Puma32H 0.9634 1.0008 1.0002

35 Iliadis et al. Multi-target prediction for dummies using two-branch neural networks. Machine Learning Journal, 2021
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Validating the framework 2

Hierarchical multi-label
classification

▶ VOC2007
▶ MS COCO

Matrix completion
▶ Movielens 100k, 1M

Multi-task learning
▶ Dogs, Birds

(crowdsourced
annotation)

Dyadic prediction
▶ DPI-E
▶ DPI-IC
▶ SRN
▶ ERN

micro-AUC eBICT DeepMTP
DPI-E 0.8053 0.8571
SRN 0.8169 0.8166
ERN 0.8536 0.8874
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DeepMTP in practice

A tutorial on DeepMTP is available in the following google colab
notebook: https://colab.research.google.com/drive/
1jc8z10_0lDcsJtsdpshegaWltGon4V1i?usp=sharing
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Questions? Remarks?
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