Multi-Target Prediction with Deep Neural Networks: A hands-on Tutorial

Willem Waegeman 1 and Dimitrios Iliadis 1

¹Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium

ECML/PKDD 2022, Grenoble, September 19th

Belgian Evenepoel wins 'historic' Grand Tour at Vuelta a Espana

Issued on: 11/09/2022 - 21:58

Multi-label classification: the example of document categorization

		Tennis	Football	Biking	Movies	τv	Belgium
01101	Text_1	0	1	1	0	0	1
00111	Text_2	1	0	0	0	0	1
01110	Text_3	0	0	0	1	1	0
10001	Text_4	0	0	1	0	1	0
01011	Text_5	1	0	0	1	0	0
11110	Text_6	?	?	?	?	?	?

Another multi-label classification example: gene function prediction

	func class_1	func class_2	func class_3	func class_4	func class_5
gene_1	1	0	0	0	0
gene_2	0	0	1	0	1
gene_3	0	1	1	0	0
gene_4	1	1	0	1	0
gene_5	1	1	0	0	0
gene_6	?	?	?	?	?

Multivariate regression: the example of protein-ligand interaction prediction

	Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
"YY	1.3	0.2	1.4	1.7	3.5	1.3
-05-65-	2	1.7	1.5	7.5	8.2	7.6
gold a	0.2	0	0.3	0.4	1.2	2.2
	3.1	1.1	1.3	1.1	1.7	5.2
Prt	?	?	?	?	?	?

Another multivariate regression example: predicting environmental pollution

	Cd	Co	Cu
location_1	1.74	9.32	25.7
location_2	1.33	10	24.7
location_3	10.6	10.6	8.88
location_4	2.15	11.9	22.7
location_5	1.56	16.3	34.3
location_6	?	?	?

Multi-task learning: the example of predicting student marks

A second multi-task learning example: predicting whether users labeled an image correctly

		2	3	4	5	6	
~1	1		0	0	1		
		0	1	0		0	1
	0	1	1	1	1		0
		1			0	1	1

	?	?	?	?	?	?	?
--	---	---	---	---	---	---	---

Motivation for this tutorial

- Over the last two decades, a lot of tailor-made methods that solve specific multi-target prediction methods have been proposed
- There is a need to understand which methods are useful under which conditions
- In addition, there is also a need for generic software tools that can be employed in a semi-automated way
- We believe that deep learning methods have generic building blocks that can be used for tackling various MTP problems

Key references:

W. Waegeman, K. Dembczynski, E. Hüllermeier. Multi-target prediction: A unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 2019.

D. Iliadis, B. De Baets and W. Waegeman. Multi-target prediction for dummies with two-branch neural networks, Machine Learning 2022.

Overview of this talk

1 Introduction (10 min)

- 2 A unifying view on MTP problems (20 min)
- 3 A unifying view on MTP methods (50 min)
- 4 Coffee break (30 min)
- 5 Hands-on part (80 min)

General framework

Definition (Multi-target prediction)

A multi-target prediction setting is characterized by instances $x \in \mathcal{X}$ and targets $t \in \mathcal{T}$ with the following properties:

- P1. A training dataset \mathcal{D} consists of triplets (x_i, t_j, y_{ij}) , where $y_{ij} \in \mathcal{Y}$ denotes a score that characterizes the relationship between the instance x_i and the target t_j .
- P2. In total, n different instances and m different targets are observed during training, with n and m finite numbers. Thus, the scores y_{ij} of the training data can be arranged in an $n \times m$ matrix Y, which is in general incomplete, i.e., Y may have missing values.
- P3. The score set \mathcal{Y} consists of nominal, ordinal and/or real values.
- P4. The goal consists of predicting scores for any instance-target couple $(x, t) \in \mathcal{X} \times \mathcal{T}$.

- Side information for targets is normally <u>not available</u>.
- Multi-label classification: (e.g., assigning appropriate category tags to documents).
- Multivariate regression: (e.g., predicting whether a protein will bind to a set of experimentally developed small molecules).
- Multi-task learning: (e.g., predicting student marks in the final exam for a typical high-school course).
- Other settings: label ranking, multi-dimensional classification, etc.

Definition (Multi-label classification)

A multi-label classification problem is a specific instantiation of the general framework, which exhibits the following additional properties:

- P5. The cardinality of T is m; this implies that all targets are observed during training.
- P6. No side information is available for targets. Again, without loss of generality, we can hence identify targets with natural numbers, such that the target space is $\mathcal{T} = \{1, ..., m\}$.
- P7. The score matrix Y has no missing values.
- P8a. The score set is $\mathcal{Y} = \{0, 1\}$.

Definition (Multivariate regression)

A multivariate regression problem is a specific instantiation of the general framework, which exhibits the following additional properties:

- P5. The cardinality of \mathcal{T} is m. This implies that all targets are observed during training.
- P6. No side information is available for targets. Without loss of generality, we can hence assign the numbers 1 to m as identifiers to targets, such that the target space is $\mathcal{T} = \{1, ..., m\}$.
- P7. The score matrix Y has no missing values.
- P8b. The score set is $\mathcal{Y} = \mathbb{R}$.

Definition (Multi-task learning)

A multi-task learning problem is a specific instantiation of the general framework, which exhibits the following additional properties:

- P5. The cardinality of T is m; this implies that all targets are observed during training.
- P6. No side information is available for targets. Again, the target space can hence be taken as $\mathcal{T} = \{1, ..., m\}$.
- P7. The score matrix Y has no missing values.
- **P8c.** The score set consists of binary or real values: $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \mathbb{R}$.

Let's assume a document hierarchy: How would you call this machine learning problem?

Let's assume a structured representation: How would you call this machine learning problem?

	~~5	à la	-ter-	- Al	"X"
and the second	1.3	0.2	0.9	1.9	3.1
all the	1.7	5.1	0.3	0.1	1.1
	0.1	2.2	0.1	0.5	4.2
- Ante	0.9	1.4	1.6	0.2	0.8
	?	?	?	?	?

Let's assume a vector representation: How would you call this machine learning problem?

Learning with side information on targets

- Examples:
 - Taxonomy on document categories (knowledge of relations between targets).
 - Representation for the target molecules in drug design application (structured representation).
 - Information about schools and courses (geographical location, qualifications of the teachers, reputation of the school, etc.) in student mark forecasting application (vector or feature representation).
- Such problems are often referred to as dyadic prediction, pairwise learning, link prediction, or network inference settings.
- However, MTP terminology is rarely used in this literature.
- Side information is of crucial importance for generalizing to novel targets that are unobserved during the training phase.

Inductive versus transductive MTP problems

Inductive versus transductive learning problems

Definition (Zero-shot learning)

A zero-shot learning problem is a specific instantiation of the general framework with the following additional property:

- P5*. $m < m^* = |\mathcal{T}|$. Some targets are hence not observed during training, but may nevertheless appear at prediction time.
 - By substituting P5 with P5*, one now tackles problems that are inductive instead of transductive w.r.t. targets.
 - The same subdivision can be made for instances.
 - In total, the four different settings referred to as A, B, C, D can be distinguished (in the presence of side information).
 - Theoretically, settings B and C are identical/symmetric, though there are practical differences/asymmetries.

A typical application of Setting A: recommender systems

		EORMULA I			59
	8	5	?	10	?
2	4	?	8	?	3
3	?	7	2	?	5
4	1	?	?	7	?
5	5	?	5	?	?

Inductive versus transductive learning problems

Definition (Matrix completion)

A matrix completion problem is a specific instantiation of the general framework with the following additional properties:

- P5. The cardinality of \mathcal{T} is m. This implies that all targets are observed during training.
- P6. No side information is available for targets. Without loss of generality, we can hence assign identifiers to targets from the set $\{1, ..., m\}$ such that the target space is $\mathcal{T} = \{1, ..., m\}$.
- P9. The cardinality of \mathcal{X} is n. This implies that all instances are observed during training.
- P10. No side information is available for instances. Without loss of generality, we can hence assign identifiers to instances from the set $\{1, ..., n\}$, such that the instance space is $\mathcal{X} = \{1, ..., n\}$.

What we usually don't cover under MTP Multi-class classification

- The one-versus-all decomposition of multi-class classification could be seen as a multi-target prediction problem
- Other decompositions (one-versus-one, ECOC, etc.) cannot be represented using the MTP framework

What we usually don't cover under MTP

Structured output prediction

- Structured output prediction considers a mapping of the form $\mathcal{X} \to \mathcal{T}$
- Could be covered by considering a target representation $oldsymbol{t}_j \in \mathcal{T}$ as an output
- Complications arise because the cardinality of \mathcal{T} would be very large, or even infinite

What we usually don't cover under MTP

Learning monadic relations

- Settings where in Y the rows and columns are identical, thus $\mathcal{X} = \mathcal{T}$
- Appears in various areas such as metric learning, similarity learning, link prediction, pairwise preference learning, etc.
- Complications arise since the matrix Y would exhibit additional properties, such as symmetry, antisymmetry, reciprocity, etc.

Overview of this talk

1 Introduction (10 min)

- 2 A unifying view on MTP problems (20 min)
- 3 A unifying view on MTP methods (50 min)
- 4 Coffee break (30 min)
- 5 Hands-on part (80 min)

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

A baseline method: learning a model for each target independently

The results section of a typical MTP paper...

Independent models a.k.a. binary relevance, models that do not exploit target dependencies, one-versus-all, etc.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

The basic deep architecture for multi-target prediction

Joint feature learning $\phi(\boldsymbol{x})$ among targets¹²:

$$f_j(\boldsymbol{x}_i) = \boldsymbol{a}_j^{\mathsf{T}} \phi_{\boldsymbol{\theta}}(\boldsymbol{x}_i) \qquad p_j(\boldsymbol{x}_i) = P(y_{ij} = 1 \mid \boldsymbol{x}_i) = \frac{\exp(-f_j(\boldsymbol{x}_i))}{1 + \exp(-f_j(\boldsymbol{x}_i))}$$

Typical loss function for regression and classification:

$$\min_{a_1,...,a_m,\theta} \sum_{i=1}^n \sum_{j=1}^m (y_{ij} - f_j(x_i))^2 \qquad \min_{a_1,...,a_m,\theta} \sum_{i=1}^n \sum_{j=1}^m CE(y_{ij}, p_j(x_i))$$

¹ First presented in: Caruana, Multitask learning: A knowledge-based source of inductive bias. Machine Learning 1997

² Figure from: Zhang et al. Facial landmark detection by deep multi-task learning, ECCV 2014

Tailor-made architectures, e.g. cross-stitch netowrks

Learn a combination of target-specific and shared representations³:

³ Figure from Misra et al. Cross-stitch networks for multi-task learning, CVPR 2016

Neural architecture search for multi-task learning ⁴

Figure 1. The problem formulation of the proposed general-purpose MTL-NAS. We dissentangle the GP-MTL networks into fixed taskspecific single-task backbones and general feature fusion schemes between them. This allows us to define a general task-agnostic search space compatible with any task combinations, as shown in the leftmost subfigure. The right-top subfigure illustrates the inter-task fusion operation, which is motivated by and extends from the NDDR-CNN [13]. We show the initialization of the fusion operation in the rightbottom subfigure. As we are inserting new edges between the fixed and well-trained single-task network backbones, we wish to make a minimal impact on the original output at each layer at initialization (*i.e.*, initializing with a large w.) (best viewed in color).

⁴ Gao et al. Task-agnostic neural architecture search towards general-purpose multi-task learning, CVPR 2020
Regularization terms for multi-target prediction⁵

- Simple assumption: models for different targets are related to each other.
- Simple solution: the parameters of these models should have similar values.
- Approach: bias the parameter vectors towards their mean vector.

$$\min_{\boldsymbol{a}_1,...,\boldsymbol{a}_m,\boldsymbol{\theta}} \sum_{i=1}^n \sum_{j=1}^m (y_{ij} - f_j(\boldsymbol{x}_i))^2 + \lambda \sum_{j=1}^m ||\boldsymbol{a}_j - \frac{1}{m} \sum_{l=1}^m \boldsymbol{a}_l||^2,$$

⁵ Evgeniou and Pontil, Regularized multi-task learning, KDD 2004.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

Encoding target relationships in deep architectures⁶⁷

Usually tailormade architectures for specific applications!

⁶ Dai et al., Instance-aware Semantic Segmentation via Multi-task Network Cascades, CVPR 2016

⁷ Xu et al., PAD-Net: Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing, CVPR 2018

Re-using Pretrained Models in (Deep) Neural Networks

Commonly-used training method: first train on targets that have a lot of observations, only train some parameters for targets that have few observations ⁸

⁸ Keras Tutorial: Transfer Learning using pre-trained models

An example from the introduction revisited

Exploiting relations in regularization terms

Graph-based regularization is an approach that can be applied to various types of relations⁹:

$$\min_{a_1,...,a_m,\theta} \sum_{i=1}^n \sum_{j=1}^m (y_{ij} - f_j(x_i))^2 + \lambda \sum_{j=1}^m \sum_{l \in \mathcal{N}(j)} ||a_j - a_l||^2$$

⁹ Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013

What does it mean for targets to be "related"?

We distinguish between conditional and unconditional (in)dependence of $targets^{10}$.

• Unconditional/marginal dependence:

$$P(\boldsymbol{y}) \neq \prod_{j=1}^{m} P(y_i)$$

Often due to model similarities, i.e., $y_{ij} = f_j(\boldsymbol{x}_i) + \epsilon_{ij}$ for $j = 1, \ldots, m$, with similarities in the structural parts $f_j(\cdot)$, which implies correlation between targets.

• Conditional dependence:

$$P(\boldsymbol{y} \mid \boldsymbol{x}) \neq \prod_{j=1}^{m} P(y_j \mid \boldsymbol{x})$$

¹⁰ Dembczynski et al., On Label Dependence and Loss Minimization in Multi-Label Classification. Machine Learning, 88, 2012.

Marginal (in)dependence \leftrightarrows conditional (in)dependence

• Example:

x_1	y_1	y_2	P	x_1	y_1	y_2	P
0	0	0	0.25	1	0	0	0
0	0	1	0	1	0	1	0.25
0	1	0	0	1	1	0	0.25
0	1	1	0.25	1	1	1	0

- Strong conditional dependence, for example $P(y_1 = 0 | x_1 = 1) P(y_2 = 0 | x_1 = 1) = 0.5 \times 0.5 = 0.25 \neq 0.$
- Yet, labels are marginally independent: Joint probability is the product of the marginals $P(y_1 = 0) = P(y_2 = 0) = 0.5$.
- Domain knowledge w.r.t. marginal dependence is often available
- Conversely, domain knowledge w.r.t. conditional dependence is almost never available, and needs to be learned from data

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

Conditional dependence in multi-label classification

• For a feature vector \boldsymbol{x} , predict a vector of responses $\boldsymbol{y} = (y_1, y_2, \dots, y_m)$ using a function/hypothesis \boldsymbol{h} :

$$\boldsymbol{x} = (x_1, x_2, \dots, x_p) \xrightarrow{\boldsymbol{h}(\boldsymbol{x})} \hat{\boldsymbol{y}} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_m)$$

• In multi-label classification, a broad spectrum of multi-label loss functions

$$\ell: \{0,1\}^m \times \{0,1\}^m \to \mathbb{R}$$

is conceivable.

• Problem: Given a target loss ℓ , find a (Bayes) predictor h that minimizes expected loss with regard to ℓ .

$$\boldsymbol{h}^{*}(\boldsymbol{x}) = \arg\min_{\boldsymbol{\hat{y}} \in \{0,1\}^{m}} \sum_{\boldsymbol{y} \in \{0,1\}^{m}} L(\boldsymbol{y}, \boldsymbol{\hat{y}}) P(\boldsymbol{y} \mid \boldsymbol{x})$$

Two simple yet extreme multi-label losses

$$\boldsymbol{h}^{*}(\boldsymbol{x}) = \arg\min_{\boldsymbol{\hat{y}} \in \{0,1\}^{m}} \sum_{\boldsymbol{y} \in \{0,1\}^{m}} L(\boldsymbol{y}, \boldsymbol{\hat{y}}) P(\boldsymbol{y} \mid \boldsymbol{x})$$

- Key question: Can we achieve this goal through simple reduction, i.e., by training one model for each target independently? Or can we do better with more sophisticated methods?
- The Hamming loss averages over mistakes on individual labels:

$$\ell_H(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \frac{1}{m} \sum_{i=1}^m \llbracket y_i \neq \hat{y}_i \rrbracket$$

• The subset 0/1 loss simply checks for entire correctness:

$$\ell_{0/1}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \llbracket \boldsymbol{y} \neq \hat{\boldsymbol{y}}
rbracket = \max_{i} \llbracket y_i \neq \hat{y}_i
rbracket$$

Hamming vs. subset 0/1 loss

• The risk minimizer for the Hamming loss is the marginal mode:

$$h_i^*(\boldsymbol{x}) = \arg \max_{y_i \in \{0,1\}} P(y_i \,|\, \boldsymbol{x}), \quad i = 1, \dots, m,$$

while for the subset 0/1 loss it is the joint mode¹¹:

$$\mathbf{h}^*(\boldsymbol{x}) = \arg \max_{\boldsymbol{y} \in \mathcal{Y}} P(\boldsymbol{y} \,|\, \boldsymbol{x}) \,.$$

Marginal mode vs. joint mode.

$m{y}$	$P(\boldsymbol{y} \mid \boldsymbol{x})$
0000	0.30
$0\ 1\ 1\ 1$	0.17
$1 \ 0 \ 1 \ 1$	0.18
$1 \ 1 \ 0 \ 1$	0.17
$1 \ 1 \ 1 \ 0$	0.18

Marginal mode:	1	1	1	1
Joint mode:	0	0	0	0

¹¹ Dembczynski et al. On label dependence and loss minimization in multi-label classification, Machine Learning 2012

Probabilistic classifier chains¹²

- Estimate the joint conditional distribution $P(\boldsymbol{y} | \boldsymbol{x})$.
- For optimizing the subset 0/1 loss:

$$\ell_{0/1}(\boldsymbol{y}, \hat{y}) = \llbracket \boldsymbol{y} \neq \hat{y} \rrbracket$$

• Repeatedly apply the product rule of probability:

$$P(\boldsymbol{y} | \boldsymbol{x}) = \prod_{i=1}^{m} P(y_i | \boldsymbol{x}, y_1, \dots, y_{i-1}).$$

Learning relies on constructing probabilistic classifiers for estimating

$$P(y_i | \boldsymbol{x}, y_1, \ldots, y_{i-1}),$$

independently for each $i = 1, \ldots, m$.

¹² Dembczysnki et al. Bayes-optimal multi-label classification with probabilistic classifier chains, ICML 2010.

• Inference relies on exploiting a probability tree¹³ ¹⁴:

- $\bullet \ (0,1)$ is the joint mode and the minimizer of the subset zero-one loss
- Can be found with specific inference algorithms
- (1,1) is the minimizer of the Hamming loss
- Compute the minimizer on a sample from $P(\boldsymbol{y} \,|\, \boldsymbol{x})$

¹³ Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012

 $^{^{14}}$ Mena et al. A family of admissible heuristics for A* to perform inference in probabilistic classifier chains, Machine Learning 2017.

Deep learning methods that estimate $P(\boldsymbol{y} \mid \boldsymbol{x})$

- Use PCC with a neural network as base learner
- Use a recurrent neural network to reduce the length of the chain in PCC by only predicting positive labels¹⁵
- Alternative methods to estimate $P(y \mid x)$, e.g. conditional random fields and their deep extensions¹⁶
- Instead of estimating $P(\boldsymbol{y} \mid \boldsymbol{x})$, consider energy-based models¹⁷:

$$\boldsymbol{h}(\boldsymbol{x}) = \arg\min_{\boldsymbol{y}\in\{0,1\}^m} E(\boldsymbol{y}, \boldsymbol{x})$$

• For certain loss functions, such as the instance-wise F-measure, it suffices to estimate specific properties of $P(y \mid x)$ ¹⁸ ¹⁹

¹⁵ Nam et al. Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification, Neurips 2017

¹⁶Zheng et al. Conditional Random Fields as Recurrent Neural Networks, ICCV2015

¹⁷ Bellanger and MacCallum, Structured Prediction Energy Networks, ICML 2016

 $^{^{18}}$ Waegeman et al. On the Bayes-optimality of F-measure maximizers, JMLR 2014

¹⁹ Decubber et al., Deep F-measure maximization in multi-label classification:a comparative study, ECML/PKDD 2018.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

An example revisited

Another example revisited

54 / 96

Target representations can take many forms

Traditional approach: Kronecker kernel ridge regression

Tensor product model representation in the primal formulation:

$$f(\boldsymbol{x}, \boldsymbol{t}) = \boldsymbol{w}^T \left(\phi(\boldsymbol{x}) \otimes \psi(\boldsymbol{t}) \right)$$

Kronecker product pairwise kernel in the dual formulation²⁰:

$$f(\boldsymbol{x},\boldsymbol{t}) = \sum_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})\in\mathcal{D}} \alpha_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})} k(\boldsymbol{x},\bar{\boldsymbol{x}}) \cdot g(\boldsymbol{t},\bar{\boldsymbol{t}}) = \sum_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})\in\mathcal{D}} \alpha_{(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}})} \Gamma((\boldsymbol{x},\boldsymbol{t}),(\bar{\boldsymbol{x}},\bar{\boldsymbol{t}}))$$

²⁰ Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018 Figure taken from https://www.math3ma.com/blog/the-tensor-product-demystified

Pairwise model representations in neural networks²¹

²¹ Lee et al. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences, PLOS Computational Biology, 2018.

Pairwise model representations in neural networks²²

²² Huang et al. DeepPurpose: a deep learning library for drug-target interaction prediction, Bioinformatics 2020.

Pairwise model representations in neural networks²³

²³ Xin et al. ATNN: Adversarial Two-Tower Neural Network for New Item's Popularity Prediction in E-commerce.

Differences between direct sum and tensor product

- In kernel methods, the tensor product is needed to guarantee universality²⁴
- In neural networks, the direct sum can mimic the tensor product when an MLP is used to learn interactions
- However, this comes at the cost of more model parameters, so more training data is needed

²⁴ Waegeman et al. A kernel-based framework to learn graded relations from data, IEEE Transactions on Fyzzy Systems, 2012. Picture taken from https://www.math3ma.com/blog/the-tensor-product-demystified

Pairwise model representations in neural networks²⁵

²⁵ Yang et al. Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations, WWW 2020.

Pairwise model representations in neural networks²⁶

²⁶ Yi et al. Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations, RecSys 2019.

Differences between direct sum and dot product

- Compared to the direct sum plus MLP, the dot product looks much more restrictive because it has less parameters
- The direct sum allows for different dimensions for instance and target embeddings
- In the area of recommender systems, the two methods give comparable empirical results²⁷

²⁷ Rendle et al., Neural Collaborative Filtering vs. Matrix Factorization Revisited, RecSys 2020.

A unifying view on MTP methods

Group of methods	Applicable setting
Independent models	В
Similarity-enforcing methods	В
Relation-exploiting methods	B and D
Relation-constructing methods	В
Representation-exploiting methods	B and D
Representation-constructing methods	A and B

Setting A: Matrix completion without or with side information

Setting B: Side information for instances is required

		PORTMULA I		4	
	8	5	?	10	?
2	4	?	8	?	3
3	?	7	2	?	5
4	1	?	?	7	?
5	?	?	?	?	?

Setting A (Matrix completion without side information)

Traditional approach: Factorize the matrix Y into two smaller matrices²⁸:

²⁸ See e.g. Jain et al., Low-rank matrix completion using alternating minimization, ACM Symposium on Theory of Computing 2013

Setting A (Matrix completion with side information)

- Construct implicit features (x^I, t^I) for users and items with matrix factorization methods
- Exploit explicit features $(\boldsymbol{x}^{E}, \boldsymbol{t}^{E})$ (a.k.a. side information)
- Concatenate:

$$\boldsymbol{x}^{C} = \boldsymbol{x}^{I} \oplus \boldsymbol{x}^{E}, \qquad \boldsymbol{t}^{C} = (\boldsymbol{t}^{I} \oplus \boldsymbol{t}^{E})$$

• Apply methods that we have seen before²⁹³⁰: $f(\boldsymbol{x}^C, \boldsymbol{t}^C) = \boldsymbol{w}^T \big(\phi(\boldsymbol{x}^C) \otimes \psi(\boldsymbol{t}^C) \big)$

²⁹ Menon and Elkan, A log-linear model with latent features for dyadic prediction, ICDM 2010 ³⁰ Volkovs and Zemel, Collaborative filtering with 17 parameters, NIPS 2012

Matrix completion with neural networks³¹

³¹ He et al., Neural collaborative filtering, WWW 2017

When is it useful to construct target representations?

• Theorem: Singular Value Decomposition

Any $n \times m$ matrix Y can be decomposed as follows:

- $\sigma_1, \sigma_2, \ldots$: singular values of Y
- r = Rank of Y = number of non-zero singular values
- High rank when a lot of singular values differ from zero
- Low rank when a lot of singular values are zero
- Singular values give insight in what can be gained

Low-dimensional target representations in Setting B

• As before, consider a linear model for every target:

$$f_j(\boldsymbol{x}_i) = \boldsymbol{a}_j^{\mathsf{T}} \boldsymbol{x}_i$$

• Can be written as a linear transformation:

$$oldsymbol{f}(oldsymbol{x}) = Aoldsymbol{x} \quad ext{with} \quad A = egin{bmatrix} oldsymbol{a}_1^T \ dots \ oldsymbol{a}_m^T \ dots \ oldsymbol{a}_m^T \ oldsymb$$

• Consider a low-rank approximation of the parameter matrix³²:

$$\min_{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m} \sum_{i=1}^n \sum_{j=1}^m (y_{ij} - f_j(\boldsymbol{x}_i))^2 + \lambda \operatorname{rank}(A)$$

 $^{^{32}}$ Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.

Low-dimensional target representations in Setting B

- A: parameter matrix of dimensionality $m \times p$
- p: the number of features
- m: the number of targets
- Assume a low-rank structure of A:

$$U imes V = A$$

 $(m \times r) (r \times p) (m \times p)$

- r is the rank of A
- We can write A = VU and $A \boldsymbol{x} = VU \boldsymbol{x}$

Applying this principle to neural networks

- Mapping input to output via bottleneck layer
- Nonlinear alternative to $Ax = VUx^{33}$

 $^{^{33}}$ Wicker et al., A nonlinear label compression and transformation method for multi-label classification using autoencoders, PAKDD 2016
Conclusions

- Multi-target prediction is an active field of research that connects different types of machine learning problems
- In the corresponding subfields of machine learning, problems have typically been solved in isolation, without establishing connections between methods
- When analyzing MTP methods, it is important to understand several concepts, such as the influence of loss functions, and the availability and absence of side information

Further reading:

W. Waegeman, K. Dembczynski, E. Hüllermeier. Multi-target prediction: A unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 2019. https://arxiv.org/abs/1809.02352

D. Iliadis, B. De Baets, W. Waegeman, Multi-target prediction for dummies using two-branch neural networks, Machine Learning, to appear. https://arxiv.org/abs/2104.09967 Overview of this talk

1 Introduction (10 min)

- 2 A unifying view on MTP problems (20 min)
- 3 A unifying view on MTP methods (50 min)
- 4 Coffee break (30 min)
- 5 Hands-on part (80 min)

Setting selection in Multi-Target Prediction

Multi-target prediction for dummies using two-branch neural networks (DeepMTP)

DeepMTP, first step towards a framework that performs setting selection and trains a model in an end-to-end approach.

- 1. An MTP setting selection step that is based on a custom-made questionnaire.
- 2. A flexible neural network architecture that can be used for the several subfields of MTP.

Purpose-made questionnaire

- Q1: Is it expected to encounter novel instances during testing? (yes/no)
- **Q2**: Is it expected to encounter novel targets during testing? (yes/no)
- Q3: Is there side information available for the instances? (yes/no)
- Q4: Is there side information available for the targets? (yes/no)
- Q5: Is the score matrix fully observed? (yes/no)
- Q6: What is the type of the target variable? (binary/nominal/ordinal/real-valued)

Multi-label classification (document categorization)

		Tennis	Football	Biking	Movies	τv	Belgium	
01101	Text_1	0	1	0	0	1	1	01
00111	Text_2	1	0	0	0	0	1	Q1: Q2:
01110	Text_3	0	0	0	1	1	0	Q3 :
10001	Text_4	0	0	1	0	1	0	Q4:
01011	Text_5	1	0	0	1	0	0	Q5: Q6:
11110	Text_6	?	?	?	?	?	?	

-	
Q2 :	no
Q3 :	yes
Q4 :	no
Q5 :	yes
Q6 :	binary

Multivariate regression (protein-ligand interaction prediction)

	Mol1	Mol2	Mol3	Mol4	Mol5	Mol6	
46 	1.3	0.2	1.4	1.7	3.5	1.3	
-ofte	2	1.7	1.5	7.5	8.2	7.6	Q1: yes Q2: no
yters	0.2	0	0.3	0.4	1.2	2.2	Q3: yes Q4: no
n jere se	3.1	1.1	1.3	1.1	1.7	5.2	Q5: yes Q6: real-value
Jor 4	?	?	?	?	?	?	

Multi-task Learning (crowd-sourced annotation)

		2	3	4	5	6	
	1		0	0	1		
Mong B		0	1	0		0	1
	0	1	1	1	1		0
		1			0	1	1
	?	?	?	?	?	?	?

- Q1: yes
- **Q2**: no
- Q3: yes
- Q4: no
- Q5: no
- Q6: binary/ real-valued

Dyadic prediction (protein-ligand interaction prediction)

	H ₂ C		- A		
	1.3	0.2	0.9	1.9	3.1
	1.7	5.1	0.3	0.1	1.1
	0.1	2.2	0.1	0.5	4.2
đội.	0.9	1.4	1.6	0.2	0.8
	?	?	?	?	?

Q1: yes Q2: no Q3: yes Q4: yes Q5: no Q6: binary/ real-valued

Matrix Completion (Content recommendation)

					55
	8	5	?	10	?
2	4	?	8	?	3
3	?	7	2	?	5
4	1	?	?	7	?
5	5	?	5	?	?

Q1: no Q2: no Q3: no Q4: no Q5: no Q6: binary/ real-valued

Setting selection in Multi-Target Prediction

Q1	Q2	Q3	Q4	Q5	Q6	MTP method
yes	no	yes	no	yes	binary	Multi-label classification
yes	no	yes	no	yes	real-valued	Multivariate regression
yes	no	yes	no	no	-	Multi-task learning
yes	no	yes	yes (hierarchy)	yes	binary	Hierarchical Multi-label classification
yes	no	yes	yes	no	-	Dyadic prediction
yes	yes	yes	yes	no	-	Zero-shot learning
no	no	no	no	no	-	Matrix completion
no	no	yes	yes	no	-	Hybrid Matrix completion
yes	yes	yes	yes	no	-	Cold-start Collaborative filtering
yes	no	yes	no	yes	nominal/categorical	Multi-dimensional classification

- These questions generate 128 different combinations
- Most of them lead to impossible tasks
- **Simple rule:** generalization to novel instances or targets necessitates the corresponding side information.

Popularized by the neural collaborative filtering $(NCF)^{34}$ method in the field of recommender systems

The multi-branch architecture has two versions:

- 1. The dual-branch architecture has to input branches (instances and targets).
- 2. The tri-branch architecture adds a third input for any available dynamic side information.

³⁴ He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering.In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182(2017)

Matrix completion with Dyadic features

Combining embedding vectors

Depending on the availability of side information:

- 1. If side information is available: use it...
- 2. If side information is missing: create one-hot encoded vectors.

Depending on the type of side information

- 1. tabular data: fully connected layers.
- 2. images: convolutional neural network.
- 3. time-series: RNNs, LSTMs..

Depending on the type of target variable:

1. if the target variable is binary: use BCE

$$\min_{\boldsymbol{a}_1,\dots,\boldsymbol{a}_m,\boldsymbol{\theta}} \sum_{i=1}^n \sum_{j=1}^m CE(y_{ij}, p_j(\boldsymbol{x}_i))$$
(1)

2. if the target variable is real-valued: use MSE

$$\min_{a_1,...,a_m,\theta} \sum_{i=1}^n \sum_{j=1}^m (y_{ij} - f_j(x_i))^2$$
(2)

A closer look

		plane	person	dog	bus	cat
-	img_1	1	0	0	0	0
Mont	img_2	0	0	1	0	1
	img_3	0	1	1	0	0
· · · · ·	img_4	1	0	0	1	0

A closer look (Dyadic Prediction)

A closer look (Matrix Completion)

Validating the framework

To investigate the effectiveness of the proposed architecture we experimented with multiple datasets from various MTP problem settings 35

• Multi-label classification

 Yeast 	Hamming loss	BR(SVM)	MLP	DeepMTP
Scene	Yeast	0.1935	0.2406	0.2309
 Bibtex 	Bibtex	0.0130	0.0198	0.0157

- Corel5k
- Multivariate regression
 - Enb

 Jura 	aRRMSE	SVR/target	MLP	DeepMTP
 Water quality 	Enb	0.1161	0.0933	0.0954
Oes97	Oes97	0.5394	0.7885	0.4843
 Oes10 	Puma32H	0.9634	1.0008	1.0002
Puma8NH		I	I	

Puma32H

³⁵ Iliadis et al. Multi-target prediction for dummies using two-branch neural networks. Machine Learning Journal, 2021

Validating the framework 2

- Hierarchical multi-label classification
 - VOC2007
 - MS COCO
- Matrix completion
 - Movielens 100k, 1M
- Multi-task learning
 - Dogs, Birds (crowdsourced annotation)
- Dyadic prediction
 - DPI-E
 - DPI-IC
 - SRN
 - ERN

micro-AUC	eBICT	DeepMTP
DPI-E	0.8053	0.8571
SRN	0.8169	0.8166
ERN	0.8536	0.8874

DeepMTP in practice

• A tutorial on DeepMTP is available in the following google colab notebook: https://colab.research.google.com/drive/ 1jc8z10_0lDcsJtsdpshegaWltGon4V1i?usp=sharing

Questions? Remarks?