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Introduction

@ Machine learning is inseparably connected with uncertainty.

@ Learning in the sense of generalizing beyond the data seen so far is
necessarily based on a process of induction.

@ Models induced from data are never provably correct, but only
hypothetical and therefore uncertain, and the same holds true for the
predictions produced by a model.

@ Other sources of uncertainty exist: incorrect model assumptions,
noisy or imprecise data, etc.

@ Trustworthy representation of uncertainty is desirable and should
be considered as a key feature of any machine learning method, all
the more in safety-critical application domains.
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Introduction

@ Many applications require safe and reliable predictions, and hence a
certain level of self-awareness of ML systems:

» equip predictions with an appropriate quantification of uncertainty,
» reject a decision in cases of high uncertainty (abstention) ,

> deliver a credible set-valued prediction (partial abstention),
-

Driver assistance systems: a safety-critical application
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Introduction

Example of a lack of uncertainty-awareness: Predictions by
EfficientNet! on test images from ImageNet: For the left image, the neural
network predicts “typewriter keyboard” with certainty 83.14 %, for the
right image “stone wall” with certainty 87.63 %.

1 m. Tan, Q.V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. ICML 2019.
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Levels of self-awareness and uncertainty representation

deterministic predictions,
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representation of epistemic uncertainty
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Supervised learning and predictive uncertainty

@ Uncertainty occurs in various facets in machine learning, and different
settings and learning problems will usually require a different
handling from an uncertainty modeling point of view.

@ Here, we focus on the standard setting of supervised learning and
predictive uncertainty.

induction  learning

rinciple  algorithm
P P & test data «

background knowledge MODEL INDUCTION -
R ’MODELh:X—))f‘

training data D h = Ind(D)

predictions § = h(x)

e Assuming probabilistic data generation p(x,y) = p(x)p(y | x),
probabilistic predictors (estimating p(y | x)) are natural primitives.
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Supervised learning and predictive uncertainty
@ A learner is given access to a set of (i.i.d.) training data

D= {(X17)/1),---a(XNa)/N)} C X x y y

where X is an instance space and ) the set of outcomes.
o Given a hypothesis space % C Y and a loss function

(:YxY R,

the goal of the learner is to induce a hypothesis h* € H with low risk

R(h) = /X G0 dPxy)

@ The learner’s choice is commonly guided by the empirical risk

1 N
Remp(h) = Nzg(h(xi)a)/i) .
i=1
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Supervised learning and predictive uncertainty

o Yet, since Remp(h) is only an estimation of the true risk R(h), the
empirical risk minimizer

h := arg min Remp(h)
heH

will normally not coincide with the true risk minimizer

h* := argmin R(h).
heH
@ Correspondingly, there remains uncertainty regarding h* as well as

the approximation quality of h (in the sense of its proximity to h*)
and its true risk R(h).

@ Eventually, one is often interested in the predictive uncertainty, i.e.,
the uncertainty related to the prediction y, for an individual (query)
instance x4 € X.

8/102



Problem setting and assumptions

@ A precise specification of the problem setting and underlying
assumptions is an important prerequisite, not only for providing
learning guarantees, but also for uncertainty quantification.

Maybe out of distribution?

+ .+
+

F oy

o ©

@ Here, one might be quite sure about the class of the query under
standard assumptions of binary classification, but much less so in a
setting of novelty detection, where new classes may emerge.

o Likewise, assumptions such as i.i.d. data generation are really
crucial (the past should be representative of the future).
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Overview of this talk

© Introduction

© Uncertainty in classification: representation and methods (40 minutes)
© Coffee break

@ Classification with reject option (25 minutes)

© Set-valued prediction methods (25 minutes)

@ Coffee break

@ Rejection and set-valued prediction with distribution shift (40 minutes)
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Sources of uncertainty

model
uncertainty

approximation

hypothesis space

f*

point prediction

probability

ground truth
best possible
induced predictor

p(-[x)
p*(-1x) = p(- | x, h*)
A(-1x) = p(-|x, h)
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Sources of uncertainty
@ A query instance x4 gives rise to a conditional probability on V:

p(xqu)

p(y [ xq) = p(xq)

@ Thus, even given full information in the form of the measure P (and
its density p), uncertainty about the actual outcome y remains.

@ The best point predictions (minimizing expected loss) are prescribed
by the pointwise Bayes predictor f*:

*(x) := argmin/ Uy,y)dP(y|x).
yey y
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Sources of uncertainty

The Bayes predictor does not necessarily coincide with the pointwise
Bayes predictor.

This discrepancy between h* and f* is connected to the uncertainty
regarding the right type of model to be fit, and hence the choice of
the hypothesis space H.

We shall refer to this uncertainty as model uncertainty.

Due to model uncertainty, one cannot guarantee
h*(x) = f*(x),
or, in the case of probabilistic predictions p*(y | x) = p(y | x, h*), that

P (-1x) = p(: | x).

13/102



Sources of uncertainty

@ Hypothesis h produced by the learner is an estimate of h*.

@ The quality of this estimate strongly depends on the quality and the
amount of training data.

@ We refer to the uncertainty about the discrepancy between h and h*
as approximation uncertainty.
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Probabilistic models

~

@ Probabilistic learners produce a single probabilistic predictor h:

h@®
(1 | )
z 7
hypothesis space . — p(i2 | @)
— (73| @)

HCF o
(i)

@ Captures stochastic nature of dependence between instances and
outcomes (aleatoric uncertainty).

o Yet, pretends full certainty about this dependence, thereby ignoring
approximation and model uncertainty.
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Bayesian learning

@ In the Bayesian approach, learning corresponds to turning a prior
distribution on # into a posterior:

p(D | h) p(h)
p(h|D) = x p(D|h)p(h
(h1D) = P o (D1 ) p()
@ The predictive posterior distribution on Y is obtained via model

averaging:
plyIx0) = [ ply|xq ) d P(h|D)
heH

@ Bayesian inference is extremely costly but can be done approximately,
for example, using ensemble methods.

@ MAP inference with

hymap = argmax p(h| D).
heH
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Gaussian processes

@ The hypothesis space in Bayesian inference is often parametrized
in the sense that each hypothesis h = hg € H is (uniquely) identified
by a parameter (vector) @ € © C RY of fixed dimensionality d.

N\

hypothesis space
HCF

parameter space
6 CR?
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Gaussian processes

@ The hypothesis space in Bayesian inference is often parametrized
in the sense that each hypothesis h = hg € H is (uniquely) identified
by a parameter (vector) @ € © C RY of fixed dimensionality d.

@ Thus, computation of the posterior essentially comes down to
updating beliefs about the true (or best) parameter:

p(8]D) x p(8) - p(D|6).

o Gaussian processes generalize the Bayesian approach from inference
about multivariate (but finite-dimensional) random variables to
inference about (infinite-dimensional) functions.

@ Thus, they can be thought of as distributions not just over random
vectors but over random functions.
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Gaussian processes
@ A stochastic process in the form of a collection of random variables
{f(x)[x e X}

with index set X is said to be drawn from a Gaussian process with
mean function m and covariance function k, denoted
f ~ GP(m, k), if for any finite set of elements

X1,...,Xm € X,

the associated finite set of random variables f(x1),...,f(xmn) has the
following multivariate normal distribution:

f(x1) m(x1)

k(x1,x - k(x1,xm
f(x2) mixa) | | KX x1) (x1, Xm)
~N : : 5
' ' k(xm, x oo k(Xm, Xm
f(Xm) m(xm) ( 1) ( )
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Gaussian processes

@ The above properties imply

E(f(x)),
E((f(x) = m(x))(f(x') = m(x))).

@ Moreover, k needs to obey the properties of a kernel function (so as
to guarantee proper covariance matrices).

m(x)
k(x,x")

@ Intuitively, a function f drawn from a Gaussian process prior can be
thought of as a (very) high-dimensional vector drawn from a (very)
high-dimensional multivariate Gaussian.

@ Here, each dimension of the Gaussian corresponds to an element x
from the index set X', and the corresponding component of the
random vector represents the value of f(x).
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Gaussian processes

@ Gaussian processes allow for doing proper Bayesian inference in a
non-parametric way.

@ Starting with a prior on functions h € H, specified by a mean
function m (often zero) and kernel k, this distribution is replaced by a
posterior in light of observed data

D = {(x;,yi) ;.

@ An observation
yi = f(xj) + €

could be corrupted by an additional (additive) noise component e;.

o Likewise, a posterior predictive distribution can be obtained on
outcomes y € Y for a new query x, € X.
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Gaussian processes

@ In general, the computations are intractable, though turn out to be
rather simple in the case of regression () = R) with Gaussian noise.

@ In this case, and assuming a zero-mean prior, the posterior predictive

distribution is again a Gaussian with mean p and variance o2

,U, K(X(I7X)(K(X7X)+J§I)_1ya
o K(anxq)+ae2_K(chX)(K(X,X)+USI)71K(Xaxq)7

where

» (X,y) is the data,
» K(X,X) is the kernel matrix with entries (K (X, X))i; = k(xi, x;),
» 02 is the variance of the (additive) error term for the observations.
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Gaussian processes

3 observations

20 observations

14
0 {=s ~~8,
. = 8 o
-1 \ o .=~ e e A5 SO
\, b ] ="~ S .6 %]
\ i “N\o
-2 Moo - -
.
-3 ™ ™ ™
0 1 2 3 6 2 3 4 5 6

== fix)

m(x)
f(x) + N(0,0.3)
m(x) = 2SE

Simple one-dimensional illustration of Gaussian processes (X = [0, 6]), with very
few examples on the left and more examples on the right. The predictive
uncertainty, as reflected by the width of the confidence band around the mean
function (orange line) reduces with an increasing number of observations.
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Gaussian processes

@ Problems with discrete outcomes y € ) = {1, ...

,Yc} are made

amenable to Gaussian processes by linking these outcomes with the
real values h = h(x) as underlying (latent) variables.

0 1 0
(@) 92 (@) go(=)
! | !

I LINK
1 1 1
| | |
hi(x) ha(x) ho(x)
GP

24 /102



Gaussian processes

@ Problems with discrete outcomes y € ) = {y1,...,yc} are made
amenable to Gaussian processes by linking these outcomes with the
real values h = h(x) as underlying (latent) variables.

0 1 0

] ] |
() ma () mo(x)

[ [ [
a1 (x) as(x) ac(x)

2 % %

I I I
hi(x) ha(x) ho(x)

GP
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Gaussian processes

@ Problems with discrete outcomes y € Y = {y1,...,yc} are made
amenable to Gaussian processes by linking these outcomes with the
real values h = h(x) as underlying (latent) variables.

@ For example, one can assume that the (conditional) class probabilities
are coming from a Dirichlet distribution:

y ~ Cat(my,...,m¢), (m1,...,m¢c) ~ Dir(aq,...,ac),

c
1 o
p(mi,...,mc) = @HW?' h
i=1

@ The idea, then, is to model the concentration parameters «; through
(latent) GPs f;.2

@ Since the likelihood will no longer be Gaussian, approximate
inference (e.g., Laplace, expectation propagation, MCMC) is needed.

2 p. Milios, R. Camoriano, P. Michiardi, L. Rosasco, M. Filippone. Dirichlet-based Gaussian Processes for Large-scale Calibrated
Classification. NeurlPS 2018.
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Bayesian learning

@ The posterior p(h| D) contains valuable information about the
learner's state of knowledge:

parameter space ©
p(y|x,)

training data D

Y1 Y2 Y3 Ya

predictive posterior

parameter space ©

T,
training data D p(y|zq)

Y1 Y2 Y3 Ya

predictive posterior
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Aleatoric versus epistemic uncertainty

o Aleatoric (aka statistical) uncertainty refers to the notion of
randomness, that is, the variability in the outcome of an experiment
which is due to inherently random effects.

e Epistemic (aka systematic) uncertainty refers to uncertainty caused
by a lack of knowledge, i.e., to the epistemic state of the agent.

@ As opposed to aleatoric uncertainty, epistemic uncertainty can in
principle be reduced on the basis of additional information.
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Aleatoric versus epistemic uncertainty

“kichwa”

H T H T
1/2 1/2 1/2 1/2

“Not knowing the chance of mutually exclusive events and knowing the
chance to be equal are two quite different states of knowledge"

Ronald Fisher (1890-1962)
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Aleatoric versus epistemic uncertainty in ML

@ Both types of uncertainty also play an important role in ML3, where
the learner's state of knowledge strongly depends on the amount of
data seen so far ...

+ +
+ ++
+ o _ o

+ 5 %0 %
o © o

3 E. Hiillermeier, W. Waegeman. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and
methods. Machine Learning, 110(3):457-506, 2021. 30/102
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Aleatoric versus epistemic uncertainty in ML

@ Both types of uncertainty also play an important role in ML3, where
the learner's state of knowledge strongly depends on the amount of
data seen so far ...
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Aleatoric versus epistemic uncertainty in ML

@ ... but also on the underlying model assumptions:

+ +
+ + +
+ o _ o
+
o © ©
o © o

strong prior

weaker prior
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Aleatoric versus epistemic uncertainty in ML

@ The distinction between aleatoric and epistemic uncertainty can be
very difficult: Is the data-generating process completely random or
only very complicated?
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Aleatoric versus epistemic uncertainty in ML

@ The distinction between aleatoric and epistemic uncertainty can be
very difficult: Is the data-generating process completely random or
only very complicated?

@ Predict the next number: 116, 304, 194, 341, 224, 654, 609, 625,
533, 91, 205, 35, 527, 611, 128, 235, 348, 912, 582, 52, 672, 20, 856,
904, 628, 273, 615, 105, 610, 862, 384, 705, 73, 794, 775, 156, ??
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Aleatoric versus epistemic uncertainty in ML

@ The distinction between aleatoric and epistemic uncertainty can be

very difficult: Is the data-generating process completely random or

only very complicated?

@ Predict the next number: 116, 304, 194, 341, 224, 654, 609, 625,

533, 91, 205, 35, 527, 611, 128, 235, 348, 912, 582, 52, 672, 20, 856,
904, 628, 273, 615, 105, 610, 862, 384, 705, 73, 794, 775, 156, ??

X < x X 237 mod 971

@ Predict the label of the query instance:

+ +

+
+ 0

o+

+ 0
o
o
+
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Uncertainty quantification

@ In the case of neural networks, epistemic uncertainty essentially
corresponds to uncertainty about the network weights.

o Fixed weights 0 lead to a fixed probability p(- | x, 6).

p(y1 |z, 0)

NN
4: ‘\\\0/
‘

N
(,,,:e,:'g ALN)

;

p(ys |z, 0)

p(ys |, 0)
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Uncertainty quantification

@ How to measure uncertainty, i.e., quantify the amount of uncertainty
contained in a prediction?

o A well-known uncertainty measure is the Shannon entropy, which, in
the case of discrete probability p: Y — [0, 1], is given by

H[Y]=H[p] == p(y)log: p(y).

yey
@ What we seek is a decomposition
TU(x) = AU(x) + EU(x)
N—— SN—— N——

total uncertainty aleatoric uncertainty  epistemic uncertainty
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Uncertainty quantification

@ One idea is to model epistemic uncertainty as mutual information

between outcomes and hypotheses:*
H[Y] = I(Y;0)+H[Y|©O]
~—— —— —
total uncertainty epistemic aleatoric

@ Intuitively, epistemic uncertainty thus captures the amount of
information about the model parameters @ that would be gained
through knowledge of the true outcome y.

o Total uncertainty = entropy of the predictive posterior distribution,
in the case of discrete ) given by

TU(x) = H[p(y|x)] == p(y|x)log, p(y | x).
yey

4. Depeweg, J.M. Hernandez-Lobato, F. Doshi-Velez, S. Udluft. Decomposition of Uncertainty in Bayesian Deep Learning for
Efficient and Risk-sensitive Learning. ICML 2018.
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Uncertainty quantification

@ This uncertainty also includes the (epistemic) uncertainty about the
network weights @, but fixing a set of weights, i.e., considering a
distribution p(y | x, @), removes the epistemic uncertainty.

@ Therefore, the expectation over the entropies of these distributions,

Epop)H[p(y | x,0)] =

—— [ p(61D) [ 3 bty [x.0) 108 ply |x.6) | a6

yey

is a measure of the aleatoric uncertainty (conditional entropy).

o Finally, the epistemic uncertainty is obtained as the difference

EU(x) := H[p(y | x)] — Epep)H[p(y | x,0)] ,
which equals the mutual information between y and 6.
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Ensemble methods for uncertainty quantification

+

+ —%}2 data

h1 ha | har

1 = h1(x) Go = ho(T) e Im = har()

@ Ensemble can be seen as an approximation of a distribution.

@ Intuitively, diversity is an indicator of epistemic uncertainty.
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Bayesian agents: Ensemble-based approximation

@ Based on an ensemble of hypotheses hy, ..., hy, producing respective
predictions p1, ..., pp, an approximation of conditional entropy can
be obtained by

M
1
AU(x) = = Z > pily |x)logy pi(y | ),
i=1yeYy
an approximation of total uncertainty (Shannon entropy) by

1 1 U
TU(x) == — Z (MZp;(y]x)> logs (MZP/‘(HX)) )
i=1 i=1

yey

Ay | %) Ay %)

and an approximation of epistemic uncertainty (mutual information)
by the difference, which is equivalent to Jensen-Shannon
divergence of the distributions p;(y | x), i=1,..., M.
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Bayesian agents: Ensemble-based approximation

@ For neural networks, it has been shown that techniques such as
Dropout® and DropConnect® can be interpreted as (implicit)
ensemble methods, and can hence be used to implement this
approach.

@ Of course, any other ensemble technique could be used as well.

K @ \ @K S5 ///,“A\%
NI AW
WA A N\

/o5
{l/‘&%
N

\\V//,

\\’w""g
@5

5 Y. Gal, Z. Ghahramani. Bayesian convolutional neural networks with Bernoulli approximate variational inference. ICLR Work-
shop Track, 2016.
6 A Mobiny, H.V. Nguyen, S. Moulik, N. Garg, C.C. Wu. DropConnect is effective in modeling uncertainty of Bayesian networks.

Scientific Reports, 11(5458), 2021.
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Summary and Outlook

@ Uncertainty is of major importance in ML in general.

@ We also highlighted the benefits of distinguishing between different
types of uncertainty, notably aleatoric and epistemic uncertainty.

@ Currently, new proposals for modeling and quantifying uncertainty
appear on a regular basis.

o Eventually, it would be desirable to “derive” a measure of total
uncertainty as well as its decomposition into aleatoric and epistemic
parts on an axiomatic basis.

@ How to perform an empirical evaluation of methods for quantifying
uncertainty? (— rejection)

@ Most approaches so far neglect model uncertainty, assuming instead
that the model is correctly specified, altough model misspecification
is a common problem in practice.

@ Related to this is the “closed world” assumption, which is often
violated in practice, e.g., in the case of OOD data.
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Overview of this talk

© Coffee break
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Overview of this talk

@ Classification with reject option (25 minutes)
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Leveraging uncertainty information

Now that we have seen the different forms of uncertainties and ways to
represent and estimate them, one question remains...

What should we do with this uncertainty information?

= Adapt our decision-making process
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Making decisions in presence of uncertainty

h: — y
Standard Cs cookie
classification
(h,r): X — YU {"l don't know" }
Classification i1 “ , "
— | don't know

with reject option
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Decision-theoretic perspective to rejection

We modify the standard classifier
h: X =Y

by adding a rejector r : X — {0,1} to it such that

_Jh(x) ifr(x) =0,
(h, r)(x) = {Q) otherwise (r(x) = 1)

What properties should the rejector r satisfy?
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Decision-theoretic perspective to rejection: Chow's rule®

Assume that rejecting induces a fixed cost A > 0, we can define the
associated risk of misclassification as’

R)\(h, r) = Ex7y [1Y7£h(X)lr(X):0 + A 1r(X):1} .

The Bayes optimal predictor of this risk is a thresholding criterion:

B (x) = argmaxp(y = k | x),
k

“(x) 1 if maxep(y =k | x)<1—A,
r =
0 otherwise.

= Reject ambiguous samples

7 Herbei et al., Classification with reject option, 2006

8 Chow, An optimum character recognition system using decision functions, 1957
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The different types of rejection

@ Positive (+) © Negative (-) $8 Ambiguity Reject (+) $3 Ambiguity Reject (-) % Novelty Reject

Picture taken from: Hendrickx et al., Machine Learning with a Reject Option: A survey, Arxiv 2021.
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Properties of the classifier-rejector relationship!?

The architecture of the classifier can be partly shared with the rejector: it
can be totally separated, dependent or integrated.

The training of the rejector can be done either sequentially or
simultaneously.

Examples of simultaneous learning:
e hinge loss similar to SVM?

@ SelectiveNet neural network!®

9 Bartlett et al., Classification with a Reject Option using a Hinge Loss, JMLR 2008.
10 Geifman et al., SelectiveNet: A Deep Neural Network with an Integrated Reject Option, ICML 2019.
11 Hendrickx et al., Machine Learning with a Reject Option: A survey, Arxiv 2021.
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Overview of this talk

© Set-valued prediction methods (25 minutes)
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Predicting sets rather than single labels

- Y

Standard

egr s — cookie
classification

(h,r): X — Y U{"l don't know" }

Classification

. . . — “l don't know"
with reject option

- P)

Set-valued

cpe L. — {cookie, panda
classification { p }
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Why predicting sets?

@ single object with uncertainty

epistemic

e 2w
keyboard

_aleatoric

)

\

impala, gazelle, hartebeest
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Why predicting sets?

@ several objects present in the data point but only a single one was
labeled

banana, orange, . B
Granny Smith sports car, convertible

“The scale of ILSVRC classification task [...] makes it very ex-
pensive to label every instance of every object in every image.
Therefore, on this dataset only one object category is labeled in
each image. This creates ambiguity in evaluation.”!?

12 Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge, 2015.
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Differences and similarities with multi-label classification

@ Differences
» we are only given a single label per sample during both training and
evaluation
» this induces a much lower annotation cost

@ Connections

3 a subset of the full label sets are

» partial multi-label classification:!
known during training;
» single positive labels classification:'* only a single positive label is

known during training, but, for evaluation, the full label sets are known.

4

3 Durand et al., Learning a deep convnet for multi-label classification with partial labels, CVPR 2019.

14 Cole et al., Multi-label learning from single positive labels, CVPR 2021.
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How to predict sets?

@ Easier approach: top-K prediction

» predict the K most probable classes
» common approach: top-5 error rate used as ImageNet's official metric

o Efficient:

> can be easily applied after fitting a model
» explicit optimization of the top-K error rate possible

* top-K hinge losses®®
* smooth losses adapted for neural network training®®

@ Issue: not adaptive
» always the same set size predicted independently of the sample.

15 Lapin et al., Loss functions for top-k error: Analysis and insights, CVPR 2018.
16 Berrada et al., Smooth loss functions for deep top-k classification, ICLR 2018.
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Human uncertainty in CIFAR-10 dataset!’
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7 Krizhevsky et al., Learning multiple layers of features from tiny images, 2009.
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Human uncertainty in CIFAR-10 dataset

CIFAR-10H'8: reannotation of CIFAR-10 test set, keeping all the human

annotations (top-1 error rate: 4.56%)

a
o
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®
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- truck
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©
Q

t airplane

Human uncertainty makes classification more robust, ICCV 2016.

18 peterson et al.,
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How to predict sets?

Trade-off between two quantities:
@ correctness: quantified using set error rate

@ informativeness: linked to set size

Point-wise Average
Errorrate £(I') P(Y ¢T(X) | X) P(Y ¢T(X))
Set size Z(IN) IT(x)] E [[F(X)I]

How to set this trade-off?
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A lot of possible ways to set the trade-off

o linear averaging / penalized risk:1? Ry\(T") := &(T) + A Z(I)

@ optimizing one quantity under a constraint on the other one:?°

mrin F() st TecC

@ harmonic averaging / F-measure: nondeterministic classifiers?!

Fs(T) == Ex,y

(1+ 8 1lyer(x)
B2+ T (X))

e utility maximization methods??: U(T") := Ex y [g(IT(X)]) 1yer(x)].
where g : N — [0, 1] is a function penalizing large sets.

9Ha, An optimum class-selective rejection rule for pattern recognition, 1996.
20 Chzhen et al., Set-valued classification—overview via a unified framework, Arxiv 2021
21 Coz et al., Learning nondeterministic classifiers, JMLR 2009.

22 Mortier et al., Efficient set-valued prediction in multi-class classification, 2021
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A lot of possible ways to set the trade-off

e linear averaging / penalized risk:1® Ry(T") := £(T) + AZ(I)

@ optimizing one quantity under a constraint on the other one:?0

mrin F() st TecC

@ harmonic averaging / F-measure: nondeterministic classifiers?!

Fs(T) == Ex,y

(1+ 8 1lyer(x)
B2+ T (X))

e utility maximization methods??: U(T") := Ex y [g(IT(X)]) 1yer(x)].
where g : N — [0, 1] is a function penalizing large sets.

19Ha, An optimum class-selective rejection rule for pattern recognition, 1996.
20 Chzhen et al., Set-valued classification—overview via a unified framework, Arxiv 2021
21 Coz et al., Learning nondeterministic classifiers, JMLR 2009.

22 Mortier et al., Efficient set-valued prediction in multi-class classification, 2021
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Constrained optimization
Minimization under constraint formulation:

Mrc € argmin F(I)

rX_P()
st. TeC

NAME OBJECTIVE F(I') CONSTRAINT C  OPTIMAL I} ¢
Penalized EMM)+AZ(I) N/A [ threshold
Point-wise size ~ £(IN) (M x) < K Mo top-K
Average size ) (N <K [ threshold
Point-wise error  Z(I') EMx) <e I top-K(x)
Average error () EN <e I'%: threshold
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Constrained optimization

Minimization under constraint formulation:

Mrc € argmin F(I)

rX_P()

st. TeC
NAME OBJECTIVE F(I') CONSTRAINT C  OPTIMAL I} ¢
Penalized EMM)+AZ(I) N/A [ threshold
Point-wise size ~ £(IN) (M x) < K Mo top-K
Average size ) (N <K [ threshold
Point-wise error  Z(I') EMx) <e I’ top-K(x)
Average error () EN <e ['%: threshold
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Constrained optimization: thresholding strategies

The penalized risk's optimal predictor is easy to compute:

RA(N) =EM +AZ(N) =Ex [1+ Y (A—ply=7x))
yer(x)

The optimal Bayes predictor '} is thus equal to
M) ={redlply=7y1x) >}

Both framework with a constraint on the average set size?> and on the
average error rate®* are optimized by thresholding the class conditional
probability p(y|x). The threshold is a well-chosen quantile value.

23 Denis et al., Confidence sets with expected sizes for multiclass classification, JMLR 2017

245adinle et al., Least ambiguous set-valued classifiers with bounded error levels, JASA 2019
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Constrained optimization: point-wise error control

Optimization problem:

;e argmin F(IN)
FX—P(Y)

st. P(Y¢T(X)|X)<e

The optimal Bayes predictor '} consists in predicting the minimum of

classes with higher probability until the sum of their probabilities is greater
than 1 —e.
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Conformal prediction?®®

We still want to learn a set predictor ' : X — P()) but in a slightly
different setting.

Coverage

P (Yni1 € T(Xni1))

where the probability P is taken over (X1, Y1), (X2, Y2), ..., (Xn+1, YN+1),
i.e., over the training data D and over the test point (Xy+1, Yn+1)-

Aim
Provide a guarantee on coverage given a miscoverage level a € (0,1):

]P)(YN+1 < r(XN+1)) >1-—a.

25\/ovk et al., Algorithmic learning in a random world, 2005.
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Full conformal prediction

Conformal predictors are based on nonconformity measures:
A (X x VL SR
and associated nonconformity scores:
s:AxY—-R
using a thresholding method, for a threshold t,
M(x)={y eV Isx,y) <t}

Setting the right threshold to achieve the wanted coverage level.
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Full conformal prediction: Limitations

Computationally demanding:
@ we need to fit the underlying model N + 1 times...

@ ...and this needs to be done for each test sample!

Different extensions were proposed to overcome this problem:

@ depending on the underlying model, in some special cases,
approximations of full conformal prediction can be computed

@ move away from transductive inference: split conformal prediction
(a.k.a. inductive conformal prediction)
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Split conformal prediction

@ Split the training set in two to extract a validation set of size N,
(X, Y]))s oy (X Y )

val’ Nval
@ Train the model on the new training set.

@ Compute the threshold t on the validation set.

Split conformal predictors can be more easily expressed using solely
nonconformity scores:

s: A xY—-R

using a thresholding method, for a threshold t,

Fx)={yeYlslxy) <t}

Typically, s(x,y) =1—p(y | x).
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Split conformal prediction

Under only an exchangeability assumption, we have a guarantee on the
coverage by picking the threshold as an appropriate quantile of the
nonconformity scores computed on the training data:

) o {s(X), Y/)h-”:?) -

val

This guarantee holds independently of the model and of the
nonconformity score.

However, by default, there is no guarantee on the informativeness of the
predicted sets!
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Summary

o A lot of different formulations of set-valued classification exist in
the literature:

» They have different properties and are useful in different scenarios.
» However, it is not always clear which formulation to use: can be
confusing.

@ For both classification with reject option and set-valued classification,
there is not a lot of literature on the connection with uncertainty
representation.

@ It could be interesting to use both a reject option with a set-valued
predictor to treat differently aleatoric and epistemic uncertainty:

> reject in presence of epistemic uncertainty
» predict a set in presence of aleatoric uncertainty

68 /102



Overview of this talk

@ Coffee break
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Overview of this talk

@ Rejection and set-valued prediction with distribution shift (40 minutes)
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What is distribution shift 7

Dataset shift appears when training and test joint distributions are
different, that is when pgain(X, ¥) # Prest(X, y).

e GOOOTOOCOBRAARKAAR

Abstention is needed in such cases, because a model cannot reliably
classify instances that are very different from those seen during training.
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What is distribution shift 7

Dataset shift appears when training and test joint distributions are
different, that is when pgain(X, ¥) # Prest(X, y).

sudden OOOOOOOOOAAAAAAAAA‘

Abstention is needed in such cases, because a model cannot reliably
classify instances that are very different from those seen during training.

Main types of dataset shift:
o Covariate shift
@ Prior probability shift
e Concept shift/drift
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Covariate shift

Happens when ptrain(y | X) = ptest(y ‘ X) and ptrain(x) 7& ptest(x)

Training image Test image

H|gh Res Image 300dpi ow Res Image 72dpi
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Prior probability shift

Happens when ptrain(x | _)/) = ptest(x | }/) and ptrain(y) 7& ptest(}/)

Computer vision

ImageNet 1k iNaturalist

Very intuitive platform, I'll definitely recommend it.
The chat support is excellent, really fast in their replies

and very helpful.

Usability Positive Customer Support

Places Textures

Species Barcode

H § ~

NLP tasks

Bioinformatics

Picture taken from: (1) Sharon Yixuan Li (2) MonkeyLearn

(3) https://bitesizebio.com /44108 /whats-that-organism-using-dna-barcoding-for-species-identification / 73/102



Concept shift

Happens when ptrain(y | X) 7& ptest(y | X) and ptrain(x) = ptest(x)
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Out-of-distribution (OOD) detection
@ Detection of a test sample x that does not belong to the training
distribution pgrain(X, y)

@ Papers that present OOD methods rarely specify what type of dataset

shift they consider

@ In experiments: often prior probability shift, sometimes also covariate

shift, almost never concept shift

Training Inference
V4 v oo
° LS °
° ° Deployment ™ ° °
e o0 o®
° oo — o @°® ®
¢ .: ® o ) . ©® [ ]
o ° o
°
eoe, X
o o °
In-distribution samples ° : °

® Out-of-distribution samples

Picture taken from: https://medium.com/geekculture/out-of-distribution-detection-in-medical-ai-b638b385c2a3
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Open set and open world recognition

@ Detection of test samples corresponding to classes with no training
samples

@ Only detection of such samples when no side information is available
(in the other case, classification via zero-shot learning)

@ Often the prior probability shift setting is considered, but might be
needed as well in the i.i.d. setting

o e '

uuc 3
wue' - w

J W o5

I ", . I o X
’oa 4 z " 'g

U 'z

é s "

L 'uue u g

3 @ - uuc* g
- T B Q
e . ‘ w
. e ik

Picture taken from: https://arxiv.org/pdf/1811.08581.pdf
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Methodology of a typical OOD

Frequency

NN f(x8)

X Energy Function
Elx )

detection paper

jout-of-distribution

in-distribution

Negative Enermgy

threshold T

Example taken from Liu et al. Energy-based Out-of-distribution Detection, Neurips 2020.

Use training data to learn
O a latent representation fy(x)
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Methodology of a typical OOD detection paper

Frequency

NN (x8)

X Energy Function
Eixf)

jout-of-distribution

in-distribution

Negative Enermgy

threshold T
Example taken from Liu et al. Energy-based Out-of-distribution Detection, Neurips 2020.

Use training data to learn

O a latent representation fy(x)
@ a scoring function s(fg(x)) that quantifies how confident we are
whether a test point x is out-of-distribution
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Methodology of a typical OOD detection paper

NN (x8)

Frequency

Energy Function
Eixf)

jout-of-distribution

in-distribution

Negative Enermgy

threshold T

Example taken from Liu et al. Energy-based Out-of-distribution Detection, Neurips 2020.

Use training data to learn

O a latent representation fy(x)

@ a scoring function s(fg(x)) that quantifies how confident we are
whether a test point x is out-of-distribution

» Explicit usage of an OOD class

v vy

OOD scores derived from p(y | x,6)
OOD scores derived from generative models p(x | 6), ignoring labels
OOD scores derived from generating models p(x | y,8), using labels
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Typical application domains

Computer vision

ImageNet-1k iNaturalist Places Textures

Very intuitive platform, I'll definitely recommend it. Spemes Barcode
The chat support is excellent, really fast in their replies
and very helpful. § I||II||I|
Usability Positive Customer Support
NLP tasks Bioinformatics

Picture taken from: (1) Sharon Yixuan Li (2) MonkeyLearn

(3) https://bitesizebio.com /44108 /whats-that-organism-using-dna-barcoding-for-species-identification /
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Experimental protocol of a typical OOD detection paper

@ Often the prior probability shift setting

@ Often OOD exposure during training, hyperparameter tuning or
threshold selection

© Define an evaluation metric:

» Without threshold selection, e.g. ROC AUC, PR AUC, etc.
» With threshold selection, e.g. Accurarcy, FPR, etc.

Cross Eniropy loss based 00D Detecor Entropy Margin loss based 00D Detector
L} . |n Distrbubon . I Dstibuton
. 00D: SUN 000 . 00D SUN
w00
000
200
00
00 200
200
w
000
i i i
name G ABO e wm o T R e
“3324e1 33161
(a) Cross entropy loss. (b) Margin entropy loss.

Example taken from Vyas et al., Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers,
ECCV 2018.
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Explicit modelling of an OOD class?® 2’8

@ In C-class classification, define a class yci1 that collects all possible
OOD data and use a standard softmax neural network:
C+1
> oply=73lx0)=1
j=1
@ OOD data must be collected for training
o Difficult to anticipate on future OOD samples that deviate from
“training” OOD set

Training Inference
., 4
. ® . Deployment
«®% e e
° o T
o U
N
.
v X
%o
AR o e
In-distribution samples oo

@ Out-of-distribution samples

26 Neal et al., Open set learning with counterfactual images, ECCV 2018
27 Mohseni et al., Self-Supervised Learning for Generalizable Out-of-Distribution Detection, AAAI 2020

28 Thulasidasan et al., A Simple and Effective Baseline for Out-of-Distribution Detection using Abstention, OpenReview 2021
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OOD scores derived from p(y | x, 6)

e Fit a traditional softmax-style discriminative neural network:

p(n | 2)
p(32| @)
p(¥s | )
p(y| @)

e Mode??:

= ERY ’9
s(x) je{”f,.affqp(y il x,0)

29 Hendrycks and Gimpel, A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks, ICLR 2017

30 Lakshminarayanan et al., Simple and scalable predictive uncertainty estimation using deep ensembles, Neurips 2017
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OOD scores derived from p(y | x, 6)

e Fit a traditional softmax-style discriminative neural network:

W<T o\ _
s
e 0 2 S
’ p(Fa | ®)
e Mode?®:
s(x) = max =yi|x,0
JE{L._’C}p(y i lx,0)
o Cross-entropy3?;
c
s(x)=>_ply =71 x,0)logp(y = 7 | x,0)
j=1

29 Hendrycks and Gimpel, A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks, ICLR 2017

30 Lakshminarayanan et al., Simple and scalable predictive uncertainty estimation using deep ensembles, Neurips 2017
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Outlier exposure in discriminative models

@ Improvements reported when OOD data is used during training
and/or hyperparameter tuning
e Incorporating outlier exposure in the loss function3!:

E(va)’\‘ptrain [ECFG(X)? y) + )\E(XI)NptraiDEOE(fG(X)’ fg(xl))]

31 Hendryckx et al., Deep anomaly detection with outlier exposure, ICLR 2019

32 Liang et al. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks, ICLR 2018
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Outlier exposure in discriminative models

@ Improvements reported when OOD data is used during training

and/or hyperparameter tuning

e Incorporating outlier exposure in the loss function3!:

E(va)’\‘ptrain [ECFG(X)? y) + )\E(XI)NptraiDEOE(fG(X)’ fg(xl))]

e Tuning temperature using OOD validation data3?

exp(fj(x, )/ T)
Yoy exp(f(x,0)/T)

p(y:)7j\x,0, T):

3 Hendryckx et al., Deep anomaly detection with outlier exposure, ICLR 2019
32 Liang et al. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks, ICLR 2018
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Outlier exposure in discriminative models

@ Improvements reported when OOD data is used during training

and/or hyperparameter tuning

e Incorporating outlier exposure in the loss function3!:

E(Xay)’\‘ptrain [ECFG(X)? y) + )\E(XI)NptraiDEOE(fG(X)’ fg(xl))]

e Tuning temperature using OOD validation data3?

exp(fj(x, )/ T)
Yoy exp(f(x,0)/T)

p(y:)7j\x,0, T):

e Typical but questionable assumption: uniform distribution p(y | x, 6)
when x is OOD

3 Hendryckx et al., Deep anomaly detection with outlier exposure, ICLR 2019

32 Liang et al. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks, ICLR 2018
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Outlier exposure usually leads to performance gains

o o0
o w O

AUROC (%)
N~
9 w

v76.73%

=@®= finetuned, use outlier label
=@= finetuned, ignore outlier label
=@ w/o finetune, use outlier label

1 '66'14% =@= w/o finetune, ignore outlier label
V¥ 1DCNN
WV finetuned, w/o outlier exposure
0 1 2 5 10 100

Outlier examples per OOD class

33 Fort et al., Exploring the Limits of Out-of-Distribution Detection, Arxiv 2021.

33
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OOD scores derived from Dirichlet distributions

[0.99, 0.99, 0.99] [5,5,1] [3, 3, 10] [5, 5, 5]

AAAA

00 02 04 06 08 10

o For every x, assume a Dirichlet distribution Dir(a())
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OOD scores derived from Dirichlet distributions

[0.99, 0.99, 0.99] [5,5,1] [3, 3, 10] [5, 5, 5]

AAAA

00 02 04 06 08 10

o For every x, assume a Dirichlet distribution Dir(a())
o Model a(9 as the output layer of a neural network

aj(_q) X

P(y:)7j|xq)267(q) Vq = argmaxp(y = ys | xq)

»C ol 1.
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OOD scores derived from Dirichlet distributions

[0.99, 0.99, 0.99] [5,5,1] [3, 3, 10] [5, 5, 5]

AAAA

00 02 04 06 08 10

For every x, assume a Dirichlet distribution Dir(a(%))

Model a(?) as the output layer of a neural network

NC)
— j N _
P(y:yj|xq):76 @ Vq = argmax p(y = ys | xq)

»C ol 1.

c
OOD detection via pseudo counts: s(xq) = Zagq)
s=1

Alternative scoring functions: differential entropy, mutual information
84 /102



Comparing various Dirichlet-based methods3*

Table 1. S y of DBU models. Further details on the loss functions are provided in the appendix.
al).parametrization Loss OO0D training data  Ensemble training Density estimation
PostNet  fy(z)) =1+a  Bayesianloss  No No Yes
PriorNet  fy(z)) = oV Reverse KL Yes No No
DDNet  fy(z) = al? Dir. Likelihood No Yes No
EvNet folz)=14+a  Expected MSE  No No No
v
Normalizing Flow
p(zlc; ) Dir(31) 4 glpriony
. v
fn'l(x( )) BV=N, plz l)lf ¢)
ey
22
2
'fﬁ,(x(-)) —_/--'N .
AP =N, p(z! "’|r o)
—
. (3) _ z3
z(3) B¢ |c o)
x
—/
Latent space Prediction

34 Kopetzki et al. Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable? ICML 2021
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Modelling p(x) using p(y | x)*®

@ Scoring function is energy of softmax network:
C
s(x)=E(x,fg) =T - IogZ A
j=1

@ Thus, no normalization step as softmax output

@ Training objective: high energy for IND data and low energy for OOD
data

@ Connection with generative models:
E(x,f5)/T .

Mﬂ:hH&MN s

35 Liu et al., Energy-based out-of-distribution detection, Neurips 2020
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OOD scores derived from p(x | 6)

Outlier and anomaly detection

@ Detection of a test sample x that does not belong to the training
distribution pirain(X)
@ Often training data is unlabeled, goal is to separate “normal” from
“anomalous” data
@ Very general terms, not always dataset shift
Feature 2

Normal Data Points
(p(x)>=¢)

Feature 1

Picture taken from: https://towardsdatascience.com/introduction-to-anomaly-detection-c651f38ccc32 87102



OOD scores derived from p(x | #): Overview of methods

o Traditional density-based methods, e.g. Gaussian mixtures, Kernel
density estimation, etc.

o Traditional distance-based methods, e.g. KNN, K-means, one-class
SVMs, etc.

@ Deep generative models: variational auto-encoders, normalizing flows,
autoregressive models, etc.

y

Encoder Decoder

Input Code Output

Picture taken from: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

88 /102



Some negative results for deep generative models

e Often higher likelihoods for OOD data than IND data3°,37,38

@ Observed for variational auto-encoders, normalizing flows and

autoregressive models

00020 <4 L 1) L ]
B FashionMNIST-TRAIN
B FashionMNIST-TEST

00015 - N MNIST-TEST

0.0010 -
0.0005 =

0.0000

log p(X)

(a) Train on FashionMNIST, Test on MNIST

bl ' T T 0 " 0 D
—4000 -3500 —3000 -2500 -2000 1500 —1000 -500

00005

NN CIFAR10-TRAIN

0,0004 N CIFAR10-TEST
SVHN-TEST

00003
00002
00001

0.0000
-12000 -10000 -8000 -6000 -4000

log p(X)
(b) Train on CIFAR-10, Test on SVHN

36 Nalisnick et al. Do deep generative models know what they don't know?, ICLR 2019
37 Kirichenko et al., Why Normalizing Flows Fail to Detect Out-of-Distribution Data?, Neurips 2020

38 Understanding failures in OOD detection with deep generative models, ICML 2021
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OOD scores derived from p(x | y,0): KDE*

@ Fit a discrinative softmax-style deep neural network to obtain fg(x)
@ Fit p(fg(x)|y = ;) via kernel density estimation
© Select a threshold per class without OOD exposure using the 1 — «

quantile:
N
t(j) = sup{ t: Zl(p(fg(x,-)b/ =y)>t)>1—-a
i=1
KNN (k=7) Kernel SVM Conformal Prediction P(X|Y)
2 M 2 m

39 Hechtlinger et al., Cautious Deep Learning, Arxiv 2019.
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OOD scores derived from p(x |y,6): LDA 4

The standard recipe:

@ Fit a discrinative softmax-style
deep neural network

@ Apply linear discriminant 1
analysis in the learned latent N
space

p(fo(x) |y = ¥, 0) = N(1;, )

© Scoring function obtained via

Mahalanobis distance 4 2 02

Oleeetal. A simple unified framework for detecting out-of-distribution samples and adversarial attacks, Neurips 2018.
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Feature learning for LDA*!

@ The quality of the learning embedding fy(x) is very important

@ SOTA results for near-OOD tasks using vision transformers and
finetuning, e.g. CIFAR-100 in-distribution and CIFAR-10
out-of-distribution

ResNet trained on CIFAR-100 VIT without finetuning VIT finetuned on CIFAR-100

+ Indistclass 1 270 + Indistcl + Indist class 1
»Indist class 2 240 “ Indist 2 | 540 X Indist class 2
* 00D« ® 00D class

630

540
® 00D class
450

360

<

270

PCA dim 2
PCA dim 2

~
£
o
3
a

180

PCA dim 1

PCA dim 1 PCA dim 1

4L Fort et al., Exploring the Limits of Out-of-Distribution Detection, Arxiv 2021.
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OOD scores derived from p(x|y,6): RBF output layer*?

@ Consider a centroid e; for class y; in a latent space fy(x)
@ Similarity between a new data point x and the centroids as follows:

mwjfom—e,-u%]

K(fy(x), ej) = exp [ 202

© Scoring function:

s(x) = max _K(fy(x), €))

@ Optimize 6, W4, ..., W¢ and ey, ..., ec using binary cross-entropy loss

Cat

Prediction
o ) FHIWeloo0 = el 5
} Uncertainty = exp e

-
(%)

42Van Amersfoort et al., Uncertainty estimation using a single deep deterministic neural network, ICML 2020.
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Reject option in case of covariate shift

Much less often studied in the literature®3,44

Typically a closed world assumption

C
BS(x,y) = (vf — ply = 7| x,0))°

Jj=1

Accuracy

Brier

N

+

3 S GBS G S O o
® & A P P00 WoR R At e
Intensity of Shift Intensity of Shift
(a) Rotated MNIST (b) Translated MNIST

Hence, more focus on calibration, accuracy and discriminative models
For example, Brier score using one-hot-encoded label vector y*:

Varilla

Temp Scaling
Ensemble
LL-Dropout

v
<

Accuracy on examples p(yiz)
)
3
3

(c) Confidence vs Acc Rotated 60°

43 Ovadia et al. Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift, Neurips 2019

44 Krueger et al., OOD Generalization via Risk Extrapolation, ICML 2021
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Reject option in case of concept drift

@ This setting is much less studied in the literature
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Reject option in case of concept drift

@ This setting is much less studied in the literature

@ Some transfer learning and domain adaptation methods can be
applied

Source domain: (Xl,yl), (X2,y2)7 ey (XN7yNtr) ~ ptrain(x,y)

Target domain: (x1,¥1)s (X2, ¥2)s ooy (XNy YN ) ~ Prest(X, )
Assumption: Ni >> Nie

@ However, no focus on reject options in such papers
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Reject option in case of concept drift

@ This setting is much less studied in the literature

@ Some transfer learning and domain adaptation methods can be
applied

Source domain: (Xl,yl), (X2,y2)7 ey (XN7yNtr) ~ ptrain(x,y)

Target domain: (x1,¥1)s (X2, ¥2)s ooy (XNy YN ) ~ Prest(X, )
Assumption: Ni >> Nie

@ However, no focus on reject options in such papers

@ More focus in some data stream classification papers
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Reject option in data stream classification®

@ Estimate p(yt | xt, yt—1, ..., tr—7) with an online learning method

45 Goepfert et al., Mitigating the Adverse Effects of Concept Drift via the Application of Reject Option, ICANN 2018
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Reject option in data stream classification®

@ Estimate p(yt | xt, yt—1, ..., tr—7) with an online learning method
@ Define a threshold on p(y: | x¢, ye—1, ..., tr—7,6)

45 Goepfert et al., Mitigating the Adverse Effects of Concept Drift via the Application of Reject Option, ICANN 2018
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Reject option in data stream classification®

© Estimate p(yt | Xty Yt—1y---

, t—7) with an online learning method

@ Define a threshold on p(y: | x¢, ye—1, ..., tr—7,6)
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5 Goepfert et al., Mitigating the Adverse Effects of Concept Drift via the Application of Reject Option, ICANN 2018
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Set-valued prediction under dataset shift

@ Size control settings: same methods can be used

46 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv

47 Tibshirani et al., Conformal prediction under covariate shift, Neurips 2020
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Set-valued prediction under dataset shift

@ Size control settings: same methods can be used

@ Error control settings: exchangeability no longer holds

(X,',y,') ~ ptrain(x,y) VI:]_,,N (Ild)
(XN+1aYN+1) ~ ptest(xvy)

@ Conformal prediction cannot be applied

46 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv
47 Tibshirani et al., Conformal prediction under covariate shift, Neurips 2020
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Set-valued prediction under dataset shift

@ Size control settings: same methods can be used
@ Error control settings: exchangeability no longer holds
(X,',y,') ~ ptrain(x,y) Vi = ]_, ceey N (Ild)
(XN+1,YNF1)  ~ Prest(X,Y)
@ Conformal prediction cannot be applied

@ Solution 1: error control by considering f-divergence of
non-conformity score distributions from piain(X, ¥) to Prrain(X, y)*°

46 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv
47 Tibshirani et al., Conformal prediction under covariate shift, Neurips 2020
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Set-valued prediction under dataset shift

@ Size control settings: same methods can be used
@ Error control settings: exchangeability no longer holds
(X,',y,') ~ ptrain(x,y) Vi = ]_, ceey N (Ild)
(XN+1,YNF1)  ~ Prest(X,Y)
@ Conformal prediction cannot be applied

@ Solution 1: error control by considering f-divergence of

non-conformity score distributions from piain(X, ¥) to Prrain(X, y)*°

Solution 2: error control by considering likelihood ratio between
Ptrain(X) and pirain(x) (covariate shift only)*’

46 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv

47 Tibshirani et al., Conformal prediction under covariate shift, Neurips 2020
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Conformal prediction under distribution shift*®
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Figure 1. Empirical coverage for the prediction sets generated by the standard conformal
methodology across nine regression data sets and 50 random splits of each data set, with an
exponential tilting in X space along the first principal component of X. The horizontal axis
gives the value of the tilting parameter a; the vertical the coverage level. A green line marks
the average coverage, a black line marks the median coverage, and the horizontal red line marks
the nominal coverage .95. The blue bands show the coverage at deciles over 50 splits.

48 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv
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Conformal prediction under distribution shift*’
e Non-conformity score: s(x,y) = —f,(x)
(x,-,y,-) ~ pval(x,y) Vi = 1,...,N (Ild)
s(xi,yi) ~ Pyal Vi=1,...,.N (i.i.d.)
(Xnt1s Y1)~ Prest(X,y)
)

S(XN+1,YN+1 ~  Prest

@ Required coverage:
P (YN+1 S I’(XN+1)) >1—«

o f-divergence ball assumption:

Quantile (o, Pya) = sup Quantile(a, Pyest)
D(Ptestvpval)gp

D(Pe:Pu) = [ (Rt ) P

49 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv
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Conformal prediction under distribution
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Figure 4. Empirical coverage and average size for the prediction sets generated by the standard
conformal methodology (“SC”) and the chi-squared divergence, across 20 random splits of
the CIFAR-10 data. We set p according to the sampling (“x*-8"), regression (“y*-R”), and
classification-based (“x2-C") strategies for estimating the amount of shift that we describe in
Section in 3. The horizontal red line marks the marginal coverage .95.

50 Cauchois et al., Robust validation: Confident predictions even when distributions shift, Arxiv

100/ 102



Conclusions

@ Important to make a distinction between prior probability shift,
covariate shift and concept drift

@ The OOD detection literature mainly focuses on prior probability
shift

@ Existing methods can be categorized according to several criteria:
amount of supervision, discriminative versus generative models, etc.

o Little work in the concept drift setting

o Little work on set-valued prediction under distribution shift
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Some related events

e ECML/PKDD 2020: Uncertainty in machine learning
(Tutorial+Workshop)

e ECML/PKDD 2021: Data shift in machine learning: What is it, and
what are potential remedies? (Tutorial)

e ICML 2021: Distribution-free uncertainty quantification (Workshop)
e ICML 2021: Uncertainty and robustness in deep learning (Workshop)

@ Neurips 2021: Out-of-distribution generalization and adaptation in
natural and artificial intelligence (Workshop)

@ Neurips 2021: Distribution shifts: connecting methods and
applications (Workshop)
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