Home

A quarter-century history

Founded in 2000 as a small team focused on preference modelling and fuzzy set theory, KERMIT (an acronym for “Knowledge Extraction, Representation and Management using Intelligent Techniques”) has grown into a leading research unit shaping the future of intelligent techniques and their applications. Over time, KERMIT evolved into a comprehensive team spanning all stages from data analysis to decision-making, with a focus on knowledge-based, predictive and spatio-temporal modelling paradigms. By maintaining a unique balance between theoretical advancements and practical applications, KERMIT has achieved remarkable success in output, visibility, and recognition. To accommodate growing specialization and enhance its reach, three subunits officially branched off in 2024: BionamiX, BioML and Biovism. Despite this structural evolution, KERMIT remains dedicated to its holistic philosophy, integrating diverse disciplines to tackle complex challenges.

Mission statement

KERMIT’s mission is to harness mathematics and computation to unravel life's complexities, optimize biological functions, and drive innovation in biodesign and decision-making under uncertainty. Focused on applied biological sciences—including biotechnology, environmental technology, plant breeding and food technology—, KERMIT refines existing methods and develops cutting-edge approaches across disciplines. The team is committed to creating accessible software tools that transform data streams into actionable and interpretable insights. Valuing continuous learning, interdisciplinary collaboration, and mental well-being, KERMIT embraces a holistic approach to solving challenges in our data-driven, interconnected world.

Methodological expertise

Mathematical modelling at KERMIT emphasizes intuitively appealing, rule-based paradigms—such as fuzzy modelling, cellular automata, and formal concept analysis—as well as cross-fertilizations thereof. The team has a particular interest in exploring the underutilized diversity of underlying mathematical structures and functions, contributing significantly to the foundations of order theory, uncertainty modelling and aggregation theory. Computational modelling at KERMIT is dedicated to developing and applying cutting-edge techniques—such as differentiable, probabilistic, and evolutionary computation—to enhance the understanding and engineering of biological systems. By integrating AI-driven simulations, the team bridges the gap between theoretical models and real-world applications.

News

Doctoral degree for Marcin Dembowski

On June 23, 2025, Marcin Dembowski successfully defended his Ph.D. thesis "Affine continuous cellular automata and their role in solving density classification problems" at the Systems Research Institute of the Polish Academy of Sciences. He was awarded the title of Doctor of Information and Communication Technology. Marcin was supervised by Bernard De Baets and Barbara Wolnik (Institute of Mathematics of the University of Gdańsk). The research of Marcin was sponsored by the Interdisciplinary Doctoral Studies in Mathematical Modelling at the University of Gdańsk.

lynn lynn lynn
11/06/2025Doctoral degree for Lynn Pickering
27/05/2025Best Paper Award at ESCIM 2025
All KERMIT news

Publications

Most recent journal publications
Biblio logo(800) Model development and model selection for simultaneous optimization of corrosion inhibitor dosages for a cooling water system
C.D. Jayaweera, I.P. Hitsov, M. Van Haeverbeke, K. Solon, C.C. Gómez Cortés, T. Depover, T. Diekow, A. Verliefde and I. Nopens
(2025) ELECTROCHIMICA ACTA. 537, 146767.
Biblio logo(799) An OWA Analysis of the VSTOXX Volatility Index
L. Gambarelli, S. Muzzioli and B. De Baets
(2025) INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING. 24, 963–995.
Biblio logo(798) The extreme value support measure machine for group anomaly detection
L. An, B. De Baets and S. Luca
(2025) MATHEMATICS. 13, 1813.
All KERMIT publications