Journal Papers (ISI)

Biblio logo(17) A complete description of the dynamics of legal outer-totalistic affine continuous cellular automata
B. Wolnik, M. Dembowski, A. Augustynowicz and B. De Baets
(2022) NONLINEAR DYNAMICS. 110, 589-610.
Biblio logo(16) Reversibility of number-conserving 1D cellular automata: unlocking insights into the dynamics for larger state sets
B. Wolnik, M. Dziemiańczuk, A. Dzedzej and B. De Baets
(2022) PHYSICA D: NONLINEAR PHENOMENA. 429, 133075.
Biblio logo(15) Two-dimensional rotation-symmetric number-conserving cellular automata
A. Dzedzej, B. Wolnik, A. Nenca, J.M. Baetens and B. De Baets
(2021) INFORMATION SCIENCES. 577, 599-621.
Biblio logo(14) Recurrent misconceptions in the study of CA reversibility on triangular grids
B. Wolnik, M. Dziemiańczuk and B. De Baets
(2021) INTERNAT. J. OF BIFURCATION AND CHAOS. 31, 2150014.
Biblio logo(13) Reversibility of non-saturated linear cellular automata on finite triangular grids
B. Wolnik, A. Augustynowicz, M. Dziemiańczuk and B. De Baets
(2021) CHAOS. 31, 013136.
Biblio logo(12) Three-dimensional rotation-symmetric number-conserving cellular automata
B. Wolnik, N. Mrożek, A. Dzedzej and B. De Baets
(2020) JOURNAL OF CELLULAR AUTOMATA. 15, 243-259.
Biblio logo(11) Efficient enumeration of three-state two-dimensional number-conserving cellular automata
A. Dzedzej, B. Wolnik, A. Nenca, J.M. Baetens and B. De Baets
(2020) INFORMATION AND COMPUTATION. 274, 104534.
Biblio logo(10) A split-and-perturb decomposition of number-conserving cellular automata
B. Wolnik, A. Nenca, J.M. Baetens and B. De Baets
(2020) PHYSICA D: NONLINEAR PHENOMENA. 431, 132645.
Biblio logo(9) Ternary reversible number-conserving cellular automata are trivial
B. Wolnik and B. De Baets
(2020) INFORMATION SCIENCES. 513, 180-189.
Biblio logo(8) A statistical approach to the identification of Diploid Cellular Automata based on incomplete observations
W. Bolt, A. Bolt, B. Wolnik, J.M. Baetens and B. De Baets
(2019) BIOSYSTEMS. 186, 103976.
Biblio logo(7) All binary number-conserving cellular automata based on adjacent cells are intrinsically one-dimensional
B. Wolnik and B. De Baets
(2019) PHYSICAL REVIEW E. 100, 022126.
Biblio logo(6) A two-layer representation of four-state reversible number-conserving 2D cellular automata
A. Dzedzej, B. Wolnik, M. Dziemiańczuk, A. Nenca, J.M. Baetens and B. De Baets
(2019) JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. 2019, 073202.
Biblio logo(5) Two-dimensional affine continuous cellular automata solving the relaxed density classification problem
M. Dembowski, B. Wolnik, W. Bolt, J.M. Baetens and B. De Baets
(2019) JOURNAL OF CELLULAR AUTOMATA. 14, 191-212.
Biblio logo(4) Affine continuous cellular automata solving the fixed-length density classification problem
M. Dembowski, B. Wolnik, W. Bolt, J.M. Baetens and B. De Baets
(2018) NATURAL COMPUTING. 17, 467-477.
Biblio logo(3) A note on reversibility of 2D cellular automata on hexagonal grids
A. Augustynowicz, J.M. Baetens, B. De Baets, A. Dzedzej, A. Nenca and B. Wolnik
(2018) JOURNAL OF CELLULAR AUTOMATA. 13, 521-525.
Biblio logo(2) Number-conserving cellular automata with a von Neumann neighborhood of range one
B. Wolnik, A. Dzedzej, J.M. Baetens and B. De Baets
(2017) JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL. 50, 435101.
Biblio logo(1) Density-conserving affine continuous cellular automata solving the relaxed density classification problem
B. Wolnik, M. Dembowski, W. Bolt, J.M. Baetens and B. De Baets
(2017) JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL. 50, 345103.