(23) No six-cell neighborhood cellular automaton solves the parity problemA. Nenca, B. Wolnik and B. De Baets(2024) THEORETICAL COMPUTER SCIENCE. 1021, 114923. |
(22) An exploration of reversible septenary number-conserving cellular automata using a range of known methodsB. Wolnik, A. Dzedzej, M. Dziemiańczuk, A. Wardyn and B. De Baets(2023) NATURAL COMPUTING. 22, 463-475. |
(21) Non-uniform number-conserving Elementary Cellular Automata on the infinite grid:
a tale of the unexpectedB. Wolnik, M. Dziemiańczuk and B. De Baets(2023) INFORMATION SCIENCES. 649, 119680. |
(20) Non-uniform number-conserving elementary cellular automataB. Wolnik, M. Dziemiańczuk and B. De Baets(2023) INFORMATION SCIENCES. 626, 851-866. |
(19) A decomposition theorem for number-conserving multi-state cellular automata on triangular grids B. Wolnik, A. Nenca and B. De Baets(2023) THEORETICAL COMPUTER SCIENCE. 953, 113795. |
(18) Seven-state rotation-symmetric number-conserving cellular automaton that is not isomorphic to any septenary oneB. Wolnik, A. Nenca, A. Dzedzej and B. De Baets(2023) PHYSICAL REVIEW E. 107, 024211. |
(17) A complete description of the dynamics of legal outer-totalistic affine continuous cellular automata
B. Wolnik, M. Dembowski, A. Augustynowicz and B. De Baets(2022) NONLINEAR DYNAMICS. 110, 589-610. |
(16) Reversibility of number-conserving 1D cellular automata: unlocking insights into the dynamics for larger state setsB. Wolnik, M. Dziemiańczuk, A. Dzedzej and B. De Baets(2022) PHYSICA D: NONLINEAR PHENOMENA. 429, 133075. |
(15) Two-dimensional rotation-symmetric number-conserving cellular automataA. Dzedzej, B. Wolnik, A. Nenca, J.M. Baetens and B. De Baets(2021) INFORMATION SCIENCES. 577, 599-621. |
(14) Recurrent misconceptions in the study of CA reversibility on triangular gridsB. Wolnik, M. Dziemiańczuk and B. De Baets(2021) INTERNAT. J. OF BIFURCATION AND CHAOS. 31, 2150014. |
(13) Reversibility of non-saturated linear cellular automata on finite triangular gridsB. Wolnik, A. Augustynowicz, M. Dziemiańczuk and B. De Baets(2021) CHAOS. 31, 013136. |
(12) Three-dimensional rotation-symmetric number-conserving cellular automataB. Wolnik, N. Mrożek, A. Dzedzej and B. De Baets(2020) JOURNAL OF CELLULAR AUTOMATA. 15, 243-259. |
(11) Efficient enumeration of three-state two-dimensional number-conserving cellular automataA. Dzedzej, B. Wolnik, A. Nenca, J.M. Baetens and B. De Baets(2020) INFORMATION AND COMPUTATION. 274, 104534. |
(10) A split-and-perturb decomposition of number-conserving cellular automataB. Wolnik, A. Nenca, J.M. Baetens and B. De Baets(2020) PHYSICA D: NONLINEAR PHENOMENA. 431, 132645. |
(9) Ternary reversible number-conserving cellular automata are trivialB. Wolnik and B. De Baets(2020) INFORMATION SCIENCES. 513, 180-189. |
(8) A statistical approach to the identification of Diploid Cellular Automata based on incomplete observationsW. Bolt, A. Bolt, B. Wolnik, J.M. Baetens and B. De Baets(2019) BIOSYSTEMS. 186, 103976. |
(7) All binary number-conserving cellular automata based on adjacent cells are intrinsically one-dimensionalB. Wolnik and B. De Baets(2019) PHYSICAL REVIEW E. 100, 022126. |
(6) A two-layer representation of four-state reversible number-conserving 2D cellular automataA. Dzedzej, B. Wolnik, M. Dziemiańczuk, A. Nenca, J.M. Baetens and B. De Baets(2019) JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. 2019, 073202. |
(5) Two-dimensional affine continuous cellular automata solving the relaxed density classification problemM. Dembowski, B. Wolnik, W. Bolt, J.M. Baetens and B. De Baets(2019) JOURNAL OF CELLULAR AUTOMATA. 14, 191-212. |
(4) Affine continuous cellular automata solving the fixed-length density classification problemM. Dembowski, B. Wolnik, W. Bolt, J.M. Baetens and B. De Baets(2018) NATURAL COMPUTING. 17, 467-477. |
(3) A note on reversibility of 2D cellular automata on hexagonal gridsA. Augustynowicz, J.M. Baetens, B. De Baets, A. Dzedzej, A. Nenca and B. Wolnik(2018) JOURNAL OF CELLULAR AUTOMATA. 13, 521-525. |
(2) Number-conserving cellular automata with a von Neumann neighborhood of range oneB. Wolnik, A. Dzedzej, J.M. Baetens and B. De Baets(2017) JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL. 50, 435101. |
(1) Density-conserving affine continuous cellular automata solving the relaxed density classification problemB. Wolnik, M. Dembowski, W. Bolt, J.M. Baetens and B. De Baets(2017) JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL. 50, 345103. |