(16) A dissection of the monotonicity property of binary operations from a dominance point of viewY. Wang, L. Zedam, B. Q. Hu and B. De Baets(2024) INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. 175, 109304. |
(15) Weaker forms of increasingness of binary operations
and their role in the characterization of meet and join operationsL. Zedam and B. De Baets(2024) FUZZY SETS AND SYSTEMS. 497, 109116. |
(14) Traces of ternary relations based on Bandler-Kohout compositionsL. Zedam, H. Boughambouz and B. De Baets(2024) MATHEMATICS. 12, 952. |
(13) A holistic approach to the composition of ternary relationsH. Boughambouz, L. Zedam and B. De Baets(2024) COMPUTATIONAL AND APPLIED MATHEMATICS. 43, 94. |
(12) Triangular norms on bounded trellisesL. Zedam and B. De Baets(2023) FUZZY SETS AND SYSTEMS. 462, 108468. |
(11) Compositions of ternary relationsN. Bakri, L. Zedam and B. De Baets(2021) KYBERNETIKA. 57, 404-425. |
(10) Transitive closures of ternary fuzzy relationsL. Zedam and B. De Baets(2021) INTERNAT. J. OF COMPUTATIONAL INTELLIGENCE SYSTEMS. 14, 1784-1795. |
(9) Closures and openings of ternary relationsL. Zedam, N. Bakri and B. De Baets(2020) INTERNAT. J. GENERAL SYSTEMS. 49, 760-784. |
(8) On the compatibility of a ternary relation with a binary fuzzy relationO. Barkat, L. Zedam and B. De Baets(2019) INTERNAT. J. UNCERTAINTY, FUZZINESS AND KNOWLEDGE-BASED SYSTEMS. 27, 595-612. |
(7) Left- and right-compatibility of order relations and fuzzy tolerance relationsL. Zedam, H. Bouremel and B. De Baets(2019) FUZZY SETS AND SYSTEMS. 360, 65-81. |
(6) Traces of ternary relationsL. Zedam, O. Barkat and B. De Baets(2018) INTERNAT. J. OF GENERAL SYSTEMS. 47, 350-373. |
(5) Clonal sets of a binary relationL. Zedam, R. Pérez-Fernández, H. Bouremel and B. De Baets(2018) INTERNAT. J. OF GENERAL SYSTEMS. 47, 329-349. |
(4) The clone relation of a binary relationH. Bouremel, R. Pérez-Fernández, L. Zedam and B. De Baets(2017) INFORMATION SCIENCES. 382–383, 308-325. |
(3) On the compatibility of a crisp relation with a fuzzy equivalence relationB. De Baets, H. Bouremel and L. Zedam(2016) IRANIAN JOURNAL OF FUZZY SYSTEMS. 13, 15-31. |
(2) A clone-based representation of the fuzzy tolerance or equivalence relations a strict order relation is compatible withB. De Baets, L. Zedam and A. Kheniche(2016) FUZZY SETS AND SYSTEMS. 296, 35-50. |
(1) Compatibility of fuzzy relationsA. Kheniche, B. De Baets and L. Zedam(2016) INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS. 31, 240-256. |