(9) Aggregation operators defined by k-order additive maxitive fuzzy measuresT. Calvo and B. De Baets(1998) INTERNAT. J. UNCERTAINTY, FUZZINESS AND KNOWLEDGE-BASED SYSTEMS. 6, 533-550. |
(8) A plea for the use of Lukasiewicz triplets in the definition of fuzzy preference structures. Part 2: The identity caseB. De Baets, B. Van de Walle and E. Kerre(1998) FUZZY SETS AND SYSTEMS. 99, 303-310. |
(7) The construction of possibility measures from samples on T-semi-partitionsB. De Baets, G. De Cooman and E. Kerre(1998) INFORM. SCI.. 106, 3-24. |
(6) Characterizable fuzzy preference structuresB. Van de Walle, B. De Baets and E. Kerre(1998) ANNALS OF OPERATIONS RESEARCH. 80, 105-136. |
(5) On the structure of the classes of stable and pure fuzzy setsE. Tsiporkova, B. De Baets and E. Kerre(1998) FUZZY SETS AND SYSTEMS. 98, 225-240. |
(4) A plea for the use of Lukasiewicz triplets in the definition of fuzzy preference structures. Part 1: General argumentationB. Van de Walle, B. De Baets and E. Kerre(1998) FUZZY SETS AND SYSTEMS. 97, 349-359. |
(3) T-partitionsB. De Baets and R. Mesiar(1998) FUZZY SETS AND SYSTEMS. 97, 211-223. |
(2) A general framework for upper and lower possibilities and necessitiesE. Tsiporkova and B. De Baets(1998) INTERNAT. J. UNCERTAINTY, FUZZINESS AND KNOWLEDGE-BASED SYSTEMS. 6, 1-33. |
(1) Continuity of fuzzy multivalued mappingsE. Tsiporkova, B. De Baets and E. Kerre(1998) FUZZY SETS AND SYSTEMS. 94, 335-348. |